Skip to content

This issue was moved to a discussion.

You can continue the conversation there. Go to discussion →

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

how to interpret the mean absolute value metric #6

Closed
wilbertmatthew opened this issue Jun 7, 2024 · 0 comments
Closed

how to interpret the mean absolute value metric #6

wilbertmatthew opened this issue Jun 7, 2024 · 0 comments

Comments

@wilbertmatthew
Copy link

Hello,

I modified the example program to add the mean_absolute_error metric. The value returned is 16.392857142857146. How do I interpret the value in terms of the accuracy of the prediction. Its a rather high value.

Thanks

import numpy as np
import matplotlib.pyplot as plt
from pypsf import Psf
from sklearn.metrics import mean_absolute_error

plt.style.use("dark_background")

t_series = np.array([112, 118, 132, 129, 121, 135, 148, 148, 136, 119, 104, 118,
115, 126, 141, 135, 125, 149, 170, 170, 158, 133, 114, 140,
145, 150, 178, 163, 172, 178, 199, 199, 184, 162, 146, 166,
171, 180, 193, 181, 183, 218, 230, 242, 209, 191, 172, 194,
196, 196, 236, 235, 229, 243, 264, 272, 237, 211, 180, 201,
204, 188, 235, 227, 234, 264, 302, 293, 259, 229, 203, 229,
242, 233, 267, 269, 270, 315, 364, 347, 312, 274, 237, 278,
284, 277, 317, 313, 318, 374, 413, 405, 355, 306, 271, 306,
315, 301, 356, 348, 355, 422, 465, 467, 404, 347, 305, 336,
340, 318, 362, 348, 363, 435, 491, 505, 404, 359, 310, 337,
360, 342, 406, 396, 420, 472, 548, 559, 463, 407, 362, 405,
417, 391, 419, 461, 472, 535, 622, 606, 508, 461, 390, 432])
train = t_series[:-28]
test = t_series[-28:]

psf = Psf(cycle_length=12, apply_diff=True, diff_periods=12)
psf.fit(train)

pred = psf.predict(len(test))
err = mean_absolute_error(test, pred)
print("prediction err", err)

fig, ax = plt.subplots()
x_train = np.array(range(len(train)))
x_test_pred = np.array(range(len(test))) + x_train[-1]
ax.plot(x_train, train, c="lightblue")
ax.plot(x_test_pred, test, c="lightgreen")
ax.plot(x_test_pred, pred, c="tab:orange")
plt.legend(["Training", "Test", "Prediction"])
plt.tight_layout()
plt.show()

Repository owner locked and limited conversation to collaborators Jan 31, 2025
@mamei16 mamei16 converted this issue into discussion #8 Jan 31, 2025

This issue was moved to a discussion.

You can continue the conversation there. Go to discussion →

Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant