forked from xuhongzuo/rosas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
137 lines (110 loc) · 5.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import numpy as np
import pandas as pd
import torch
import glob
import argparse
import ast
import time
import utils
import yaml
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, default='data', help='data path')
parser.add_argument('--datasets', type=str, default='pendigits,thyroid',
help='dataset name of the path, use FULL to include all the datasets')
parser.add_argument('--algo', type=str, default="rosas")
parser.add_argument('--flag', type=str, default="")
parser.add_argument('--n_known', type=int, default=30)
parser.add_argument('--contamination', type=float, default=0.02)
parser.add_argument('--runs', type=int, default=1)
parser.add_argument('--log_avg', type=ast.literal_eval, default=False)
parser.add_argument('--use_es', type=ast.literal_eval, default=True)
parser.add_argument('--debug', action='store_true', default=False)
parser.add_argument('--res_path', type=str, default='@records/')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
os.makedirs('log/', exist_ok=True)
os.makedirs(args.res_path, exist_ok=True)
from RoSAS import RoSAS
params = yaml.load(open('configs.yaml', 'r'), Loader=yaml.FullLoader)['model_params']['rosas']
root_path = './'
def run_model(df, dataset_name, runs):
model_name = args.algo
print("------------------------------------ Dataset: [%s] ------------------------------------" % dataset_name)
df.replace([np.inf, -np.inf], np.nan, inplace=True)
df.fillna(method='ffill', inplace=True)
x = df.values[:, :-1]
y = np.array(df.values[:, -1], dtype=int)
x_train, y_train, x_test, y_test, x_val, y_val = utils.split_train_test_val(x, y,
test_ratio=0.2,
val_ratio=0.2,
random_state=2021,
del_features=True)
semi_y = utils.semi_setting(y_train, n_known_outliers=args.n_known)
# # this is to control contamination rate and estimate the robustness
if args.contamination is not None:
x_train, y_train, semi_y = utils.adjust_contamination(x_train, y_train, semi_y,
adjust_cont_r=args.contamination,
random_state=2021)
rauc, raucpr, rtime = np.zeros(runs), np.zeros(runs), np.zeros(runs)
for i in range(runs):
st = time.time()
params['use_es'] = args.use_es
params['seed'] = 42 + i
model = RoSAS(**params)
param_lst = model.param_lst
model.fit(x_train, semi_y, val_x=x_val, val_y=y_val)
score = model.predict(x_test)
auroc, aupr = utils.evaluate(y_test, score)
rtime[i] = time.time() - st
rauc[i] = auroc
raucpr[i] = aupr
txt = f'{dataset_name}, AUC-ROC: {auroc:.4f}, AUC-PR: {aupr:.4f}, ' \
f'time: {rtime[i]:.1f}, runs: [{i+1}/{runs}]'
print(txt)
doc1 = open(args.res_path + f'@raw_{model_name}{args.flag}.csv', 'a')
print(txt, file=doc1)
doc1.close()
print_text = f"{dataset_name}, AUC-ROC, {np.average(rauc):.4f}, {np.std(rauc):.4f}," \
f" AUC-PR, {np.average(raucpr):.4f}, {np.std(raucpr):.4f}, {np.average(rtime):.1f}," \
f" {runs}runs, {args.n_known}known, {args.contamination:.2f}cont," \
f" {model_name}, {str(param_lst)}"
print(print_text, end='\n\n\n')
if not args.debug:
doc1 = open(args.res_path + f'{model_name}{args.flag}.csv', 'a')
print(print_text, file=doc1)
doc1.close()
return np.average(rauc), np.average(raucpr)
if __name__ == '__main__':
path = os.path.join(root_path, args.path)
t1 = time.time()
datasets_auc = []
datasets_aupr = []
if args.datasets == 'FULL':
f_lst = glob.glob(os.path.join(path, '*.csv'))
for f in sorted(f_lst):
name = os.path.splitext(os.path.split(f)[1])[0]
df = pd.read_csv(f)
auroc, aupr = run_model(df, dataset_name=name, runs=args.runs)
datasets_auc.append(auroc)
datasets_aupr.append(aupr)
else:
datasets = args.datasets.split(',')
for d in datasets:
f = glob.glob(os.path.join(path, f'*{d}*.csv'))
assert len(f) == 1
f = f[0]
name = os.path.splitext(os.path.split(f)[1])[0]
df = pd.read_csv(f)
auroc, aupr = run_model(df, dataset_name=name, runs=args.runs)
datasets_auc.append(auroc)
datasets_aupr.append(aupr)
avg1 = np.average(datasets_auc)
avg2 = np.average(datasets_aupr)
avg = f"avg, AUC-ROC, {avg1:.3f}, AUC-PR, {avg2:.3f}, {time.time()-t1:.1f}s"
print(avg)
if args.log_avg and not args.debug:
doc = open(args.res_path + f'{args.algo}{args.flag}.csv', 'a')
print("", file=doc)
print(avg, file=doc)
doc.close()