Skip to content

Latest commit

 

History

History
executable file
·
97 lines (82 loc) · 4.33 KB

README.md

File metadata and controls

executable file
·
97 lines (82 loc) · 4.33 KB

Datasets Descriptions for Anomaly Detection


Both Semantic and Sensory AD

COCO-AD

  • Download and extract COCO 2017 into data/coco.
  • runpython data/gen_benchmark/coco.py to obtain data/coco/meta_20_x.json and val2017_mask_ad_20_x, where x=0,1,2,3 represent splits.
  • Use DefaultAD in data/ad_dataset.py as the dataloader.
data
├── coco
    ├── annotations
        ├── instances_train2017.json
        ├── instances_val2017.json
    ├── train2017
    ├── val2017
    ├── meta_20_0.json
    ├── val2017_mask_ad_20_0
        ├── 000000000139.png
        ├── 000000000724.png

Sensory AD

MVTec AD

  • Download and extract MVTec AD into data/mvtec.
  • runpython data/gen_benchmark/mvtec.py to obtain data/mvtec/meta.json that matches standard DefaultAD in data/ad_dataset.py.
data
├── mvtec
    ├── meta.json
    ├── bottle
        ├── train
            └── good
                ├── 000.png
        ├── test
            ├── good
                ├── 000.png
            ├── anomaly1
                ├── 000.png
        └── ground_truth
            ├── anomaly1
                ├── 000.png

MVTec 3D-AD

  • Download and extract MVTec 3D-AD into data/mvtec3d.
  • runpython data/gen_benchmark/mvtec.py to obtain data/mvtec3d/meta.json that matches standard DefaultAD in data/ad_dataset.py.

VisA

  • Download and extract VisA into data/visa.
  • Refer to project page for data preparation, and run.
  • runpython data/gen_benchmark/visa.py to obtain data/visa/meta.json that matches standard DefaultAD in data/ad_dataset.py.

Real-IAD

  • Download and extract Real-IAD into data/realiad.

Uni-Medical

Semantic AD

Cifar

  • Download and extract Cifar10 / Cifar100 into data/cifar
  • Use CifarAD in data/ad_dataset.py as the dataloader, which covers three general settings for Cifar10 and one unified setting for Cifar100.
Dataset Setting Description
Cifar10 Unified 5 normals & 5 abnormals
5x5,000 for train & 5x1,000+5x1,000 for test
Cifar10 One-Class-Train 1 normal & 9 abnormals
1x5,000 for train & 1x1,000+1,000 for test
Cifar10 One-Class-Test 9 normals & 1 abnormal
9x5,000 for train & 9x1,000+6,000 for test
Cifar100 Unified 50 normals & 50 abnormals
50x500 for train & 50x100+50x100 for test
data
├── cifar
    ├── cifar-100-python
    ├── cifar-10-batches-py

Tiny-ImageNet-200

  • Download and extract Tiny ImageNet into data/tiny-imagenet-200.
  • runpython data/gen_benchmark/coco.py to obtain data/coco/meta_20_x.json and val2017_mask_ad_20_x, where x=0,1,2,3 represent splits.
  • Use TinyINAD in data/ad_dataset.py as the dataloader.
data
├── cifar
    ├── cifar-100-python
    ├── cifar-10-batches-py
Dataset Setting Description
Cifar100 Unified 100 normals & 100 abnormals
100x500 for train & 100x50+100x50 for test