-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathui.py
395 lines (334 loc) · 11.5 KB
/
ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# import p2
# import numpy as np
# import cv2
#
# # gray = np.loadtxt("D:\\cs.csv", dtype=np.int, delimiter=",", encoding='utf-8')
# # gray = np.loadtxt("D:\\cs.csv", dtype=np.int, delimiter=",", encoding='utf-8', usecols=range(5))
#
# # a, b, c = p2.cut(gray, 0, 1)
# # print(a)
# a = cv2.imread("D:\\experiment\\pic\\q\\8068.jpg")
# # print(a)
# # print(a[0])
# # print(a[1])
# # print(a[2])
# np.savetxt("D:\\a0" + ".csv", a[:, :, 0], fmt="%d", delimiter=',')
# np.savetxt("D:\\a1" + ".csv", a[:, :, 1], fmt="%d", delimiter=',')
# np.savetxt("D:\\a2" + ".csv", a[:, :, 2], fmt="%d", delimiter=',')
# 以像素点之间的中点向量作为分割边界
import rgb
import numpy as np
import cv2
import matplotlib.pyplot as plt
# gray = np.array([[100, 100, 100], [80, 80, 80], [80, 110, 80]])
# gray = np.array([[80, 80, 80], [80, 80, 80], [80, 110, 80]])
# gray = np.array([[80, 80, 80], [80, 80, 80], [80, 110, 80]])
gray = np.zeros((5, 5))
path1 = "D:\\cs.csv"
# gray = np.loadtxt(path1, dtype=np.int, delimiter=",", encoding='utf-8', usecols=range(4))
# print(gray)
# r1, r2 = p2.cut(gray, 10, 3)
# print(r1)
# print(r2)
# verify_close(gray)
# 输入 gray原始标记图,i,j 分别为横纵坐标
# 作用:原图分割点进行标记
def fix_tag(gray, i, j):
# if isinstance(j, int):
# gray[int(i + 0.5), j] = 1
# # gray[int(i - 0.5), j] = 1
# if isinstance(i, int):
# gray[i, int(j + 0.5)] = 1
# # gray[i, int(j - 0.5)] = 1
gray[i, j] = 1
# 输入gray原始标记上图,i,j分别是横轴坐标,tag是区域划分的标记符号
# 作用:遍历25邻域,进行区域标记
def go_near(gray, i, j, tag, i_low, i_high, j_low, j_high, gray1):
# if i + 1 > 4 or j + 1 > 4:
# return
# if i - 1 < 0 or j - 1 < 0:
# return
if i_low <= i + 1 <= i_high and j_low <= j <= j_high and gray[i + 1, j] == 0 and gray1[
int((i + 0.5) * 2), j * 2] != 1:
gray[i + 1, j] = tag
go_near(gray, i + 1, j, tag, i_low, i_high, j_low, j_high, gray1)
if i_low <= i <= i_high and j_low <= j + 1 <= j_high and gray[i, j + 1] == 0 and gray1[
i * 2, int((j + 0.5) * 2)] != 1:
gray[i, j + 1] = tag
go_near(gray, i, j + 1, tag, i_low, i_high, j_low, j_high, gray1)
if i_high >= i - 1 >= i_low and j_low <= j <= j_high and gray[i - 1, j] == 0 and gray1[
int((i - 0.5) * 2), j * 2] != 1:
gray[i - 1, j] = tag
go_near(gray, i - 1, j, tag, i_low, i_high, j_low, j_high, gray1)
if i_low <= i <= i_high and j_high >= j - 1 >= j_low and gray[i, j - 1] == 0 and gray1[
i * 2, int((j - 0.5) * 2)] != 1:
gray[i, j - 1] = tag
go_near(gray, i, j - 1, tag, i_low, i_high, j_low, j_high, gray1)
# gray原始标记图,x,y是起始25邻域的左上坐标点
# 如果没有形成闭合的区域就去除该区域的标记
def fix_area(gray, x, y):
for i in range(x, x + 5):
for j in range(y, y + 5):
gray[i, j] = 0
def fix_area1(gray1, x, y):
for i in range(x, x + 10):
for j in range(y, y + 10):
gray1[i, j] = 0
# gray原始的标记图,x,y起始25邻域的左上坐标点
# 判断该25邻域是给是有闭合区域
def verify_close(gray, x, y, gray1):
tag = 2
i_low = x
i_high = x + 4
j_low = y
j_high = y + 4
for i in range(x, x + 5):
for j in range(y, y + 5):
# go_near(gray, i, j)
# print((i, j))
if gray[i, j] == 0:
gray[i, j] = tag
go_near(gray, i, j, tag, i_low, i_high, j_low, j_high, gray1)
tag += 1
# print(gray)
if tag == 3:
fix_area(gray, x, y)
fix_area1(gray1, x * 2, y * 2)
else:
# print(gray)
fix_noise(gray, x * 2, y * 2, gray1)
fix_area(gray, x, y)
print("2222")
# print(tag)
x_po = [-1, 0, 1, 0]
y_po = [0, 1, 0, -1]
# 作用:处理区域内部的八邻域多余分割点
# 过程: 查看该分割点前后区域是否被归为同一个区域,前后的判定是根据在横轴坐标的哪个轴上面
def fix_noise(gray, x, y, gray1):
for i in range(x, x + 9):
for j in range(y, y + 9):
if gray1[i, j] == 1:
# tag = 0
# for k in range(1, len(x_po)):
# if gray1[i + x_po[0], j + y_po[0]] == gray1[i + x_po[k], j + y_po[k]] and (
# gray1[i + x_po[0], j + y_po[0]] != 1 or gray1[i + x_po[k], j + y_po[k]] != 1):
# tag += 1
# if tag == 3:
# gray1[i, j] = 0
if i % 2 == 0:
if gray[int(i / 2), int(j / 2 + 0.5)] == gray[int(i / 2), int(j / 2 - 0.5)]:
gray1[i, j] = 0
# print("fix__j")
if j % 2 == 0:
if gray[int(i / 2 + 0.5), int(j / 2)] == gray[int(i / 2 - 0.5), int(j / 2)]:
gray1[i, j] = 0
# print("fix__i")
src = "41004"
inpath = "D:\\experiment\\pic\\q\\"
outpath = "D:\\out\\"
raw = cv2.imread(inpath + src + ".jpg")
# raw2 = cv2.cvtColor(raw, cv2.COLOR_BGR2GRAY)
raw_Filter = cv2.bilateralFilter(raw, 7, 50, 50)
raw2 = cv2.cvtColor(raw_Filter, cv2.COLOR_BGR2GRAY)
# raw_Filter = raw
# raw2_Filter = raw2
raw2_Filter = cv2.bilateralFilter(raw2, 7, 50, 50)
cv2.imwrite("D:\\gray" + src + ".jpg", raw2_Filter)
np.savetxt("D:\\gray" + src + ".csv", raw2_Filter, fmt="%d", delimiter=',')
# raw2_Filter = np.loadtxt("D:\\cs.csv", dtype=np.int, delimiter=",", encoding='utf-8')
# raw2 = raw2_Filter
# re, re_weak = p2.cut(raw2_Filter, 20, 3)
# 大小两个阈值
re, re_weak, noise = rgb.cut(raw2_Filter, 5, 2, raw_Filter)
# np.savetxt("D:\\fix_gray" + src + ".csv", raw2_Filter, fmt="%d", delimiter=',')
print(re)
gray = np.zeros((raw2.shape[0], raw2.shape[1]))
gray1 = np.zeros((raw2.shape[0] * 2, raw2.shape[1] * 2))
print((raw2.shape[0], raw2.shape[1]))
for m in range(0, len(re)):
x1 = re[m][0][0]
x2 = re[m][1][0]
y1 = re[m][0][1]
y2 = re[m][1][1]
# x2 = re[m + 1][1][0]
# x2 = re[m + 1][1][0]
# y2 = re[m + 1][1][1]
# y2 = re[m + 1][1][1]
# plt.scatter((x1 + x2) / 2, (y1 + y2) / 2, c='r')
yy = (y1 + y2)
xx = (x1 + x2)
# if yy % 2 == 0:
# yy = int((y1 + y2) / 2)
# xx = (x1 + x2) / 2
# if xx % 2 == 0:
# xx = int((x1 + x2) / 2)
# yy = (y1 + y2) / 2
# print((xx, yy))
fix_tag(gray1, xx, yy)
np.savetxt("D:\\tag" + src + ".csv", gray1, fmt="%d", delimiter=',')
re1 = np.zeros((gray.shape[0], gray.shape[1]))
for i in range(gray1.shape[0]):
for j in range(gray1.shape[1]):
if gray1[i, j] == 1:
re1[int(i / 2), int(j / 2)] = 255
cv2.imwrite("D:\\re_local_raw" + src + ".jpg", re1)
for i in range(0, gray.shape[0] - 5, 5):
for j in range(0, gray.shape[1] - 5, 5):
verify_close(gray, i, j, gray1)
np.savetxt("D:\\re_local" + src + ".csv", gray, fmt="%d", delimiter=',')
# for i in range(9, gray1.shape[1], 10):
# for j in range(0, gray1.shape[0]):
# gray1[j, i] = 0
#
# for i in range(9, gray1.shape[0], 10):
# for j in range(0, gray1.shape[1]):
# gray1[i, j] = 0
re = np.zeros((gray.shape[0], gray.shape[1]))
for i in range(gray1.shape[0]):
for j in range(gray1.shape[1]):
if gray1[i, j] == 1:
re[int(i / 2), int(j / 2)] = 255
cv2.imwrite("D:\\re_local" + src + ".jpg", re)
re_x = []
re_y = []
# print(re)
# for m in range(0, len(re)):
# x1 = re[m][0][0]
# x2 = re[m][1][0]
# y1 = re[m][0][1]
# y2 = re[m][1][1]
# # x2 = re[m + 1][1][0]
# # x2 = re[m + 1][1][0]
# # y2 = re[m + 1][1][1]
# # y2 = re[m + 1][1][1]
# # plt.scatter((x1 + x2) / 2, (y1 + y2) / 2, c='r')
# yy = (y1 + y2)
# xx = (x1 + x2)
# if yy % 2 == 0:
# yy = int((y1 + y2) / 2)
# xx = (x1 + x2) / 2
# # xx = ((y1 + y2))
# # yy = ((x1 + x2))
# if xx % 2 == 0:
# xx = int((x1 + x2) / 2)
# yy = (y1 + y2) / 2
# if isinstance(yy, int) and gray[int(xx + 0.5), yy] == 255 and gray[int(xx - 0.5), yy] == 255:
# # gray[int(xx + 0.5), yy] = 0
# # gray[int(xx - 0.5), yy] = 0
# print(1)
# re_x.append(xx)
# re_y.append(yy)
# if isinstance(xx, int) and gray[xx, int(yy + 0.5)] == 255 and gray[xx, int(yy - 0.5)] == 255:
# # gray[xx, int(yy + 0.5)] = 0
# # gray[xx, int(yy - 0.5)] = 0
# print(2)
# re_x.append(xx)
# re_y.append(yy)
# 全图的存储
# for i in range(gray1.shape[0]):
# for j in range(gray1.shape[1]):
# if gray1[i, j] == 1:
# re_x.append(i / 2)
# re_y.append(j / 2)
# 只针对5*5的区域进行存储
print("请输入5*5邻域中的横纵坐标值")
x_in = int(input())*2
y_in = int(input())*2
# x_in = 130 * 2
# y_in = 110 * 2
for i in range(x_in, x_in + 9):
for j in range(y_in, y_in + 9):
if gray1[i, j] == 1:
re_x.append(i / 2)
re_y.append(j / 2)
cs_gray = np.zeros((5, 5))
for i in range(int(x_in / 2), int(x_in / 2) + 5):
for j in range(int(y_in / 2), int(y_in / 2) + 5):
cs_gray[i - int(x_in / 2), j - int(y_in / 2)] = raw2_Filter[i, j]
np.savetxt("D:\\cs_gray" + src + ".csv", cs_gray, fmt="%d", delimiter=',')
# x8 = 1
# y8 = 1
print("请输入5*5邻域中相对左上角坐标的八邻域的中心点")
print("将范围以此中心点的八邻域两个分割点坐标")
x8 = int(input())
y8 = int(input())
rgb.show_cut(raw2_Filter, 10, 5, raw_Filter, int(x_in / 2)+x8, int(y_in / 2)+y8)
print(re_x)
print(re_y)
plt.scatter(re_y, re_x, s=1, c='r')
plt.gca().invert_yaxis()
plt.savefig("D:\\re_local_line" + src,
dpi=1000) # 指定分辨率保存
re, re_weak, noise = rgb.cut(raw2, 10, 5, raw)
show = np.zeros((raw2.shape[0] * 2, raw2.shape[1] * 2))
for m in range(0, len(re)):
x1 = re[m][0][0]
x2 = re[m][1][0]
y1 = re[m][0][1]
y2 = re[m][1][1]
yy = ((y1 + y2))
xx = ((x1 + x2))
show[xx, yy] = 2
for k in range(0, len(re_weak)):
x1 = re_weak[k][0][0]
x2 = re_weak[k][1][0]
y1 = re_weak[k][0][1]
y2 = re_weak[k][1][1]
yy = ((y1 + y2))
xx = ((x1 + x2))
show[xx, yy] = 1
x, y = rgb.find_weak(show, show)
gray1 = np.zeros((raw2.shape[0] * 2, raw2.shape[1] * 2))
for m in range(0, len(re)):
x1 = re[m][0][0]
x2 = re[m][1][0]
y1 = re[m][0][1]
y2 = re[m][1][1]
yy = (y1 + y2)
xx = (x1 + x2)
fix_tag(gray1, xx, yy)
for m in range(0, len(x)):
xx = int(x[m] *2)
yy = int(y[m] *2)
fix_tag(gray1, xx, yy)
gray = np.zeros((raw2.shape[0], raw2.shape[1]))
for i in range(0, gray.shape[0] - 5, 5):
for j in range(0, gray.shape[1] - 5, 5):
verify_close(gray, i, j, gray1)
re_x = []
re_y = []
for i in range(gray1.shape[0]):
for j in range(gray1.shape[1]):
if gray1[i, j] == 1:
re_x.append(i / 2)
re_y.append(j / 2)
plt.scatter(re_y, re_x, s=1, c='r')
# plt.gca().invert_yaxis()
plt.savefig("D:\\re_extend" + src,
dpi=1000) # 指定分辨率保存
# print(gray)
# gray1 = np.zeros((gray.shape[0] * 2, gray.shape[1] * 2))
# print(gray1)
# fix_tag(gray1, 1, 0)
# fix_tag(gray1, 0, 1)
# # fix_tag(gray1, 2.5, 2)
# # fix_tag(gray1, 2.5, 3)
# # fix_tag(gray1, 2.5, 4)
#
# # fix_tag(gray1, 5, 0)
# # fix_tag(gray1, 5, 2)
# # fix_tag(gray1, 5, 4)
# # fix_tag(gray1, 5, 6)
# # fix_tag(gray1, 5, 8)
#
# # fix_tag(gray1, 2, 5)
# # fix_tag(gray1, 4, 5)
# # fix_tag(gray1, 6, 5)
# # fix_tag(gray1, 8, 5)
# # fix_tag(gray1, 0, 5)
# # fix_tag(gray1, 1, 2)
#
# print(gray1)
# verify_close(gray, 0, 0, gray1)
# print(gray1)
# print(gray)