-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp61.py
615 lines (545 loc) · 18 KB
/
p61.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
# import p2
# import numpy as np
# import cv2
#
# # gray = np.loadtxt("D:\\cs.csv", dtype=np.int, delimiter=",", encoding='utf-8')
# # gray = np.loadtxt("D:\\cs.csv", dtype=np.int, delimiter=",", encoding='utf-8', usecols=range(5))
#
# # a, b, c = p2.cut(gray, 0, 1)
# # print(a)
# a = cv2.imread("D:\\experiment\\pic\\q\\8068.jpg")
# # print(a)
# # print(a[0])
# # print(a[1])
# # print(a[2])
# np.savetxt("D:\\a0" + ".csv", a[:, :, 0], fmt="%d", delimiter=',')
# np.savetxt("D:\\a1" + ".csv", a[:, :, 1], fmt="%d", delimiter=',')
# np.savetxt("D:\\a2" + ".csv", a[:, :, 2], fmt="%d", delimiter=',')
# 以像素点之间的中点向量作为分割边界
import p6rgb
import numpy as np
import cv2
import p6MyMarchingSquares
import matplotlib.pyplot as plt
import modify
# gray = np.array([[100, 100, 100], [80, 80, 80], [80, 110, 80]])
# gray = np.array([[80, 80, 80], [80, 80, 80], [80, 110, 80]])
# gray = np.array([[80, 80, 80], [80, 80, 80], [80, 110, 80]])
gray = np.zeros((5, 5))
path1 = "D:\\cs.csv"
# gray = np.loadtxt(path1, dtype=np.int, delimiter=",", encoding='utf-8', usecols=range(4))
# print(gray)
# r1, r2 = p2.cut(gray, 10, 3)
# print(r1)
# print(r2)
# 输入 gray原始标记图,i,j 分别为横纵坐标
# 作用:原图分割点进行标记
def fix_tag(gray, i, j):
# if isinstance(j, int):
# gray[int(i + 0.5), j] = 1
# # gray[int(i - 0.5), j] = 1
# if isinstance(i, int):
# gray[i, int(j + 0.5)] = 1
# # gray[i, int(j - 0.5)] = 1
gray[i, j] = 1
# 输入gray原始标记上图,i,j分别是横轴坐标,tag是区域划分的标记符号
# 作用:遍历25邻域,进行区域标记
def go_near(gray, i, j, tag, i_low, i_high, j_low, j_high, gray1):
# if i + 1 > 4 or j + 1 > 4:
# return
# if i - 1 < 0 or j - 1 < 0:
# return
# show_area(gray,i,j)
if i_low <= i + 1 <= i_high and j_low <= j <= j_high and gray[i + 1, j] == 0 and gray1[
int((i + 0.5) * 2), j * 2] != 1:
gray[i + 1, j] = tag
# print((i+1,j))
go_near(gray, i + 1, j, tag, i_low, i_high, j_low, j_high, gray1)
if i_low <= i <= i_high and j_low <= j + 1 <= j_high and gray[i, j + 1] == 0 and gray1[
i * 2, int((j + 0.5) * 2)] != 1:
gray[i, j + 1] = tag
# print((i,j+1))
go_near(gray, i, j + 1, tag, i_low, i_high, j_low, j_high, gray1)
if i_high >= i - 1 >= i_low and j_low <= j <= j_high and gray[i - 1, j] == 0 and gray1[
int((i - 0.5) * 2), j * 2] != 1:
gray[i - 1, j] = tag
# print((i-1,j))
go_near(gray, i - 1, j, tag, i_low, i_high, j_low, j_high, gray1)
if i_low <= i <= i_high and j_high >= j - 1 >= j_low and gray[i, j - 1] == 0 and gray1[
i * 2, int((j - 0.5) * 2)] != 1:
gray[i, j - 1] = tag
# print((i,j-1))
go_near(gray, i, j - 1, tag, i_low, i_high, j_low, j_high, gray1)
# gray原始标记图,x,y是起始25邻域的左上坐标点
# 如果没有形成闭合的区域就去除该区域的标记
def fix_area(gray, x, y):
for i in range(x, x + 5):
for j in range(y, y + 5):
gray[i, j] = 0
# 清除标记图的标记
def fix_area1(gray1, x, y):
tag = False
# for i in range(x+2, x + 8):
for i in range(x, x + 9):
# for j in range(y+2, y + 8):
for j in range(y, y + 9):
if gray1[i,j]==1:
tag = True
gray1[i, j] = 0
if tag == True:
return 1
# def show_gray(gray, x, y):
# for i in range(x, x + 5):
# print()
# for j in range(y, y + 5):
# print(gray[i,j],end=" ")
#
#
# def show_tag(gray, x, y):
# for i in range(x, x + 9):
# print()
# for j in range(y, y + 9):
# print(gray[i,j],end=" ")
#
# def show_area(gray, x, y):
# for i in range(x, x + 5):
# print()
# for j in range(y, y + 5):
# print(gray[i,j],end=" ")
# gray原始的标记图,x,y起始25邻域的左上坐标点
# 判断该25邻域是给是有闭合区域
def verify_close(gray, x, y, gray1,raw):
tag = 2
i_low = x
i_high = x + 4
j_low = y
j_high = y + 4
for i in range(x, x + 5):
for j in range(y, y + 5):
# go_near(gray, i, j)
# print((i, j))
if gray[i, j] == 0:
gray[i, j] = tag
# print((i,j))
go_near(gray, i, j, tag, i_low, i_high, j_low, j_high, gray1)
tag += 1
# print(gray)
if tag == 3:
fix_area(gray, x, y)
re_tag = fix_area1(gray1, x * 2, y * 2)
# if re_tag==1:
# show_gray(raw,x,y)
# show_tag(gray1,x * 2, y * 2)
# show_area(gray,x,y)
else:
# print(gray)
fix_noise(gray, x * 2, y * 2, gray1)
fix_area(gray, x, y)
# print(tag)
x_po = [-1, 0, 1, 0]
y_po = [0, 1, 0, -1]
# 作用:处理区域内部的八邻域多余分割点,多余过渡点是该分割点是在5*5邻域分割的两块区域的内部而不是相邻的部分
# 过程: 查看该分割点前后区域是否被归为同一个区域,前后的判定是根据在横轴坐标的哪个轴上面
def fix_noise(gray, x, y, gray1):
for i in range(x, x + 9):
for j in range(y, y + 9):
if gray1[i, j] == 1:
# tag = 0
# for k in range(1, len(x_po)):
# if gray1[i + x_po[0], j + y_po[0]] == gray1[i + x_po[k], j + y_po[k]] and (
# gray1[i + x_po[0], j + y_po[0]] != 1 or gray1[i + x_po[k], j + y_po[k]] != 1):
# tag += 1
# if tag == 3:
# gray1[i, j] = 0
if i % 2 == 0:
if gray[int(i / 2), int(j / 2 + 0.5)] == gray[int(i / 2), int(j / 2 - 0.5)]:
gray1[i, j] = 0
# print("fix__j")
if j % 2 == 0:
if gray[int(i / 2 + 0.5), int(j / 2)] == gray[int(i / 2 - 0.5), int(j / 2)]:
gray1[i, j] = 0
# print("fix__i")
# 判断5*5的区域是否是过渡区域,如果大于特定的个数就是过渡区域
def is_transition(tra,x,y,th):
sum_num = 0
for i in range(x, x + 5):
for j in range(y, y + 5):
if tra[i,j]==1:
sum_num+=1
if sum_num>th:
return True
else:
return False
# 主函数
src = "blur15simple"
# src = "cs4"
inpath = "D:\\experiment\\pic\\q\\"
# outpath = "D:\\out\\"
raw = cv2.imread(inpath + src + ".jpg")
# # raw2 = cv2.cvtColor(raw, cv2.COLOR_BGR2GRAY)
# raw_Filter = cv2.bilateralFilter(raw, 7, 50, 50)
# # raw_Filter = raw
# raw2 = cv2.cvtColor(raw_Filter, cv2.COLOR_BGR2GRAY)
# raw2_Filter = cv2.bilateralFilter(raw2, 7, 50, 50)
# # raw2_Filter = raw2
# # cv2.imwrite("D:\\gray" + src + ".jpg", raw2_Filter)
# np.savetxt("D:\\gray" + src + ".csv", raw2_Filter, fmt="%d", delimiter=',')
raw2_Filter = np.loadtxt("D:\\re"+src+".csv", dtype=np.int, delimiter=",", encoding='utf-8')
raw2 = raw2_Filter
raw_Filter = raw
raw_Filter[:,:,0]=raw2_Filter
raw_Filter[:,:,1]=raw2_Filter
raw_Filter[:,:,2]=raw2_Filter
raw = raw_Filter
# 测试csv数据
# raw2_Filter = np.loadtxt("D:\\cs.csv", dtype=np.int, delimiter=",", encoding='utf-8')
# raw_Filter = np.zeros((raw2_Filter.shape[0],raw2_Filter.shape[1], 3))
# raw_Filter[:, :, 1] = raw2_Filter
# raw_Filter[:, :, 0] = raw2_Filter
# raw_Filter[:, :, 2] = raw2_Filter
# raw = raw_Filter
# raw2 = raw2_Filter
# for i in range(0, raw2.shape[0] - 4, 5):
# for j in range(0, raw2.shape[1] - 4, 5):
# p6rgb.fix_transition(raw_Filter[:,:,0], i, j)
# p6rgb.fix_transition(raw_Filter[:,:,1], i, j)
# p6rgb.fix_transition(raw_Filter[:,:,2], i, j)
# p6rgb.fix_transition(raw2_Filter, i, j)
# 大小两个阈值
re, re_weak, noise = p6rgb.cut(raw2_Filter, 10, 10, raw_Filter)
# gray = np.zeros((raw2.shape[0], raw2.shape[1]))
# gray1 = np.zeros((raw2.shape[0] * 2, raw2.shape[1] * 2))
# 标记明显分割点
# for m in range(0, len(re)):
# x1 = re[m][0][0]
# x2 = re[m][1][0]
# y1 = re[m][0][1]
# y2 = re[m][1][1]
# yy = (y1 + y2)
# xx = (x1 + x2)
# fix_tag(gray1, xx, yy)
# np.savetxt("D:\\tag" + src + ".csv", gray1, fmt="%d", delimiter=',')
#
# 标记原始大小二维矩阵中的分割点的前后位正负值
# double_edge = np.zeros((raw2.shape[0], raw2.shape[1]))
# for m in range(0, len(re_weak)):
# x1 = re_weak[m][0][0]
# x2 = re_weak[m][1][0]
# y1 = re_weak[m][0][1]
# y2 = re_weak[m][1][1]
# if raw2[x1,y1] > raw2[x2,y2]:
# double_edge[x1,y1] = 1
# double_edge[x2,y2] = -1
# else:
# double_edge[x1, y1] = -1
# double_edge[x2, y2] = 1
# for m in range(0, len(re)):
# x1 = re[m][0][0]
# x2 = re[m][1][0]
# y1 = re[m][0][1]
# y2 = re[m][1][1]
# if raw2[x1,y1] > raw2[x2,y2]:
# double_edge[x1,y1] = 2
# double_edge[x2,y2] = -2
# else:
# double_edge[x1, y1] = -2
# double_edge[x2, y2] = 2
# np.savetxt("D:\\double_edge" + src + ".csv", double_edge, fmt="%d", delimiter=',')
# 标记明显区域的分割点和次明显区域的分割点
show = np.zeros((raw2.shape[0] * 2, raw2.shape[1] * 2))
for m in range(0, len(re)):
x1 = re[m][0][0]
x2 = re[m][1][0]
y1 = re[m][0][1]
y2 = re[m][1][1]
yy = ((y1 + y2))
xx = ((x1 + x2))
show[xx, yy] = 2
for k in range(0, len(re_weak)):
x1 = re_weak[k][0][0]
x2 = re_weak[k][1][0]
y1 = re_weak[k][0][1]
y2 = re_weak[k][1][1]
yy = ((y1 + y2))
xx = ((x1 + x2))
show[xx, yy] = 1
# 寻找哪些合理的次明显区域分割点
x, y = p6rgb.find_weak(show, show)
gray1 = np.zeros((raw2.shape[0] * 2, raw2.shape[1] * 2))
for m in range(0, len(re)):
x1 = re[m][0][0]
x2 = re[m][1][0]
y1 = re[m][0][1]
y2 = re[m][1][1]
yy = (y1 + y2)
xx = (x1 + x2)
fix_tag(gray1, xx, yy)
# 只用来存储次明显分割点
gray2 = np.zeros((raw2.shape[0] * 2, raw2.shape[1] * 2))
for m in range(0, len(x)):
xx = int(x[m] * 2)
yy = int(y[m] * 2)
fix_tag(gray2, xx, yy)
# gray_clone_find_guodu = p6rgb.merge_tag(gray2,gray1)
gray = np.zeros((raw2.shape[0], raw2.shape[1]))
gray_clone = gray1.copy()
# 下面用
# gray_clone_find_guodu = gray1.copy()
for i in range(0, gray.shape[0] - 5, 5):
for j in range(0, gray.shape[1] - 5, 5):
verify_close(gray, i, j, gray_clone,raw2)
for i in range(3, gray.shape[0] - 5, 5):
for j in range(3, gray.shape[1] - 5, 5):
verify_close(gray, i, j, gray1,raw2)
gray1 = p6rgb.merge_tag(gray_clone,gray1)
# gray_clone_find_guodu = p6rgb.merge_tag(gray2,gray1)
# noise_num = 1
# a, b, guodu, d, e = modify.noise_array(raw2_Filter, noise_num)
# def merge_guodu(gray_clone_find_guodu,gray1, x, y):
# for i in range(x, x + 9):
# for j in range(y, y + 9):
# if gray_clone_find_guodu[i,j]==1:
# gray1[i,j]=1
# for i in range(0, gray.shape[0] - 5, 5):
# for j in range(0, gray.shape[1] - 5, 5):
# if is_transition(guodu,i,j,10):
# merge_guodu(gray_clone_find_guodu,gray1,i,j)
# x, y = p6MyMarchingSquares.traverse_new(double_edge,gray1)
# x, y = p6MyMarchingSquares.show_line(double_edge,gray1,i,j)
plt.axis("equal")
plt.gca().invert_yaxis()
plt.axis('off')
plt.scatter(0, 0, c='r')
plt.scatter(0, raw2.shape[0], c='r')
plt.scatter(raw2.shape[1],0, c='r')
plt.scatter(raw2.shape[1], raw2.shape[0], c='r')
for i in range(1,gray.shape[0]-1):
for j in range(1,gray.shape[1]-1):
x, y = p6MyMarchingSquares.verify_mid(gray1, i, j)
if x!=0 and y!=0:
# plt.plot(y, x, lw=0.5,color='black')
plt.plot(y, x, lw=0.5, color='white')
plt.savefig("D:\\fix_tran1__"+src , facecolor='black',
dpi=500) # 指定分辨率保存
# plt.savefig("D:\\fix_tran1__" ,
# dpi=500) # 指定分辨率保存
# 画边的函数
# plt.axis("equal")
# plt.gca().invert_yaxis()
# plt.axis('off')
# plt_x = []
# plt_y = []
# plt_x.append(x[0])
# plt_x.append(x[1])
# plt_y.append(y[0])
# plt_y.append(y[1])
# for i in range(2, len(x) - 1, 2):
# if x[i - 1] == x[i] and y[i - 1] == y[i]:
# plt_x.append(x[i])
# plt_x.append(x[i + 1])
# plt_y.append(y[i])
# plt_y.append(y[i + 1])
# else:
# plt.plot(plt_y, plt_x, lw=0.5,color='white')
# plt_x = []
# plt_y = []
# plt_x.append(x[i])
# plt_x.append(x[i + 1])
# plt_y.append(y[i])
# plt_y.append(y[i + 1])
# plt.plot(plt_y, plt_x, lw=0.5,color='white')
# plt.savefig("D:\\fix_tran__" , facecolor='black',
# dpi=500) # 指定分辨率保存
# re1 = np.zeros((gray.shape[0], gray.shape[1]))
# for i in range(gray1.shape[0]):
# for j in range(gray1.shape[1]):
# if gray1[i, j] == 1:
# re1[int(i / 2), int(j / 2)] = 255
# cv2.imwrite("D:\\re_local_raw" + src + ".jpg", re1)
# np.savetxt("D:\\re_local_raw" + src + ".csv", re1, fmt="%d", delimiter=',')
#
# for i in range(0, gray.shape[0] - 5, 5):
# for j in range(0, gray.shape[1] - 5, 5):
# # for i in range(0, gray.shape[0] - 4, 4):
# # for j in range(0, gray.shape[1] - 4, 4):
# verify_close(gray, i, j, gray1,raw2)
# np.savetxt("D:\\re_local" + src + ".csv", gray, fmt="%d", delimiter=',')
#
# # for i in range(9, gray1.shape[1], 10):
# # for j in range(0, gray1.shape[0]):
# # gray1[j, i] = 0
# #
# # for i in range(9, gray1.shape[0], 10):
# # for j in range(0, gray1.shape[1]):
# # gray1[i, j] = 0
#
# re = np.zeros((gray.shape[0], gray.shape[1]))
# for i in range(gray1.shape[0]):
# for j in range(gray1.shape[1]):
# if gray1[i, j] == 1:
# re[int(i / 2), int(j / 2)] = 255
# cv2.imwrite("D:\\re_local" + src + ".jpg", re)
#
# re_x = []
# re_y = []
# # print(re)
# # for m in range(0, len(re)):
# # x1 = re[m][0][0]
# # x2 = re[m][1][0]
# # y1 = re[m][0][1]
# # y2 = re[m][1][1]
# # # x2 = re[m + 1][1][0]
# # # x2 = re[m + 1][1][0]
# # # y2 = re[m + 1][1][1]
# # # y2 = re[m + 1][1][1]
# # # plt.scatter((x1 + x2) / 2, (y1 + y2) / 2, c='r')
# # yy = (y1 + y2)
# # xx = (x1 + x2)
# # if yy % 2 == 0:
# # yy = int((y1 + y2) / 2)
# # xx = (x1 + x2) / 2
# # # xx = ((y1 + y2))
# # # yy = ((x1 + x2))
# # if xx % 2 == 0:
# # xx = int((x1 + x2) / 2)
# # yy = (y1 + y2) / 2
# # if isinstance(yy, int) and gray[int(xx + 0.5), yy] == 255 and gray[int(xx - 0.5), yy] == 255:
# # # gray[int(xx + 0.5), yy] = 0
# # # gray[int(xx - 0.5), yy] = 0
# # print(1)
# # re_x.append(xx)
# # re_y.append(yy)
# # if isinstance(xx, int) and gray[xx, int(yy + 0.5)] == 255 and gray[xx, int(yy - 0.5)] == 255:
# # # gray[xx, int(yy + 0.5)] = 0
# # # gray[xx, int(yy - 0.5)] = 0
# # print(2)
# # re_x.append(xx)
# # re_y.append(yy)
#
#
# # 全图的存储
# for i in range(gray1.shape[0]):
# for j in range(gray1.shape[1]):
# if gray1[i, j] == 1:
# re_x.append(i / 2)
# re_y.append(j / 2)
#
# # 只针对5*5的区域进行存储
# # x_in = 130 * 2
# # y_in = 110 * 2
# # for i in range(x_in, x_in + 9):
# # for j in range(y_in, y_in + 9):
# # if gray1[i, j] == 1:
# # re_x.append(i / 2)
# # re_y.append(j / 2)
# #
# # cs_gray = np.zeros((5, 5))
# # for i in range(int(x_in / 2), int(x_in / 2) + 5):
# # for j in range(int(y_in / 2), int(y_in / 2) + 5):
# # cs_gray[i - int(x_in / 2), j - int(y_in / 2)] = raw2_Filter[i, j]
# # np.savetxt("D:\\cs_gray" + src + ".csv", cs_gray, fmt="%d", delimiter=',')
# #
# # x8 = 1
# # y8 = 1
#
#
#
#
# # x_in = 0
# # y_in = 0
# # for x8 in range(1, 4):
# # for y8 in range(1, 4):
# # rgb.show_cut(raw2_Filter, 10, 5, raw_Filter, int(x_in / 2) + x8, int(y_in / 2) + y8)
# #
# # print(re_x)
# # print(re_y)
#
#
#
#
# plt.axis("equal")
# plt.scatter(re_y, re_x, s=1, c='r')
# plt.gca().invert_yaxis()
# plt.savefig("D:\\re_local_line" + src,
# dpi=1000) # 指定分辨率保存
#////////////////////////////////////////////////////////////////////////
# re, re_weak, noise = rgb.cut(raw2, 10, 5, raw)
# show = np.zeros((raw2.shape[0] * 2, raw2.shape[1] * 2))
# for m in range(0, len(re)):
# x1 = re[m][0][0]
# x2 = re[m][1][0]
# y1 = re[m][0][1]
# y2 = re[m][1][1]
# yy = ((y1 + y2))
# xx = ((x1 + x2))
# show[xx, yy] = 2
# for k in range(0, len(re_weak)):
# x1 = re_weak[k][0][0]
# x2 = re_weak[k][1][0]
# y1 = re_weak[k][0][1]
# y2 = re_weak[k][1][1]
# yy = ((y1 + y2))
# xx = ((x1 + x2))
# show[xx, yy] = 1
#
# x, y = rgb.find_weak(show, show)
#
# gray = np.zeros((raw2.shape[0], raw2.shape[1]))
# gray1 = np.zeros((raw2.shape[0] * 2, raw2.shape[1] * 2))
# for m in range(0, len(re)):
# x1 = re[m][0][0]
# x2 = re[m][1][0]
# y1 = re[m][0][1]
# y2 = re[m][1][1]
# yy = (y1 + y2)
# xx = (x1 + x2)
# fix_tag(gray1, xx, yy)
# for m in range(0, len(x)):
# xx = int(x[m] * 2)
# yy = int(y[m] * 2)
# fix_tag(gray1, xx, yy)
#
# for i in range(0, gray.shape[0] - 5, 5):
# for j in range(0, gray.shape[1] - 5, 5):
# verify_close(gray, i, j, gray1,raw2)
#
# re_x = []
# re_y = []
# for i in range(gray1.shape[0]):
# for j in range(gray1.shape[1]):
# if gray1[i, j] == 1:
# re_x.append(i / 2)
# re_y.append(j / 2)
#
# plt.axis("equal")
# plt.scatter(re_y, re_x, s=1, c='r')
# # plt.gca().invert_yaxis()
# plt.savefig("D:\\re_extend" + src,
# dpi=1000) # 指定分辨率保存
#///////////////////////////////////////////////////////////////////////////
# print(gray)
# gray1 = np.zeros((gray.shape[0] * 2, gray.shape[1] * 2))
# print(gray1)
# fix_tag(gray1, 1, 0)
# fix_tag(gray1, 0, 1)
# # fix_tag(gray1, 2.5, 2)
# # fix_tag(gray1, 2.5, 3)
# # fix_tag(gray1, 2.5, 4)
#
# # fix_tag(gray1, 5, 0)
# # fix_tag(gray1, 5, 2)
# # fix_tag(gray1, 5, 4)
# # fix_tag(gray1, 5, 6)
# # fix_tag(gray1, 5, 8)
#
# # fix_tag(gray1, 2, 5)
# # fix_tag(gray1, 4, 5)
# # fix_tag(gray1, 6, 5)
# # fix_tag(gray1, 8, 5)
# # fix_tag(gray1, 0, 5)
# # fix_tag(gray1, 1, 2)
#
# print(gray1)
# verify_close(gray, 0, 0, gray1)
# print(gray1)
# print(gray)