-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp2_cs.py
203 lines (171 loc) · 5.63 KB
/
p2_cs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# 以像素点作为分割边界
# 测试主函数
import p2
import numpy as np
import cv2
import matplotlib.pyplot as plt
# gray = np.array([[100, 100, 100], [80, 80, 80], [80, 110, 80]])
# gray = np.array([[80, 80, 80], [80, 80, 80], [80, 110, 80]])
# gray = np.array([[80, 80, 80], [80, 80, 80], [80, 110, 80]])
gray = np.zeros((5, 5))
path1 = "D:\\cs.csv"
# gray = np.loadtxt(path1, dtype=np.int, delimiter=",", encoding='utf-8', usecols=range(4))
# print(gray)
# r1, r2 = p2.cut(gray, 10, 3)
# print(r1)
# print(r2)
# verify_close(gray)
# 输入 gray原始标记图,i,j 分别为横纵坐标
# 作用:原图分割点进行标记
def fix_tag(gray, i, j):
if isinstance(j, int):
gray[int(i + 0.5), j] = 1
# gray[int(i - 0.5), j] = 1
if isinstance(i, int):
gray[i, int(j + 0.5)] = 1
# gray[i, int(j - 0.5)] = 1
# 输入gray原始标记上图,i,j分别是横轴坐标,tag是区域划分的标记符号
# 作用:遍历25邻域,进行区域标记
def go_near(gray, i, j, tag, i_low, i_high, j_low, j_high):
# if i + 1 > 4 or j + 1 > 4:
# return
# if i - 1 < 0 or j - 1 < 0:
# return
if i_low <= i + 1 <= i_high and j_low <= j <= j_high and gray[i + 1, j] == 0:
gray[i + 1, j] = tag
go_near(gray, i + 1, j, tag, i_low, i_high, j_low, j_high)
if i_low <= i <= i_high and j_low <= j + 1 <= j_high and gray[i, j + 1] == 0:
gray[i, j + 1] = tag
go_near(gray, i, j + 1, tag, i_low, i_high, j_low, j_high)
if i_high >= i - 1 >= i_low and j_low <= j <= j_high and gray[i - 1, j] == 0:
gray[i - 1, j] = tag
go_near(gray, i - 1, j, tag, i_low, i_high, j_low, j_high)
if i_low <= i <= i_high and j_high >= j - 1 >= j_low and gray[i, j - 1] == 0:
gray[i, j - 1] = tag
go_near(gray, i, j - 1, tag, i_low, i_high, j_low, j_high)
# gray原始标记图,x,y是起始25邻域的左上坐标点
# 如果没有形成闭合的区域就去除该区域的标记
def fix_area(gray, x, y):
for i in range(x, x + 5):
for j in range(y, y + 5):
gray[i, j] = 0
# gray原始的标记图,x,y起始25邻域的左上坐标点
# 判断该25邻域是给是有闭合区域
def verify_close(gray, x, y):
tag = 2
i_low = x
i_high = x + 4
j_low = y
j_high = y + 4
for i in range(x, x + 5):
for j in range(y, y + 5):
# go_near(gray, i, j)
# print((i, j))
if gray[i, j] == 0:
gray[i, j] = tag
go_near(gray, i, j, tag, i_low, i_high, j_low, j_high)
tag += 1
if tag == 3:
fix_area(gray, x, y)
else:
print("2222")
# print(tag)
src = "41004"
inpath = "D:\\experiment\\pic\\q\\"
outpath = "D:\\out\\"
raw = cv2.imread(inpath + src + ".jpg")
raw_Filter = cv2.bilateralFilter(raw, 7, 50, 50)
raw2 = cv2.cvtColor(raw_Filter, cv2.COLOR_BGR2GRAY)
raw2_Filter = cv2.bilateralFilter(raw2, 7, 50, 50)
cv2.imwrite("D:\\gray.jpg", raw2_Filter)
np.savetxt("D:\\gray" + ".csv", raw2_Filter, fmt="%d", delimiter=',')
# re, re_weak = p2.cut(raw2_Filter, 20, 3)
# 大小两个阈值
re, re_weak, noise = p2.cut(raw2_Filter, 5, 6)
np.savetxt("D:\\fix_gray" + ".csv", raw2_Filter, fmt="%d", delimiter=',')
print(re)
gray = np.zeros((raw2.shape[0], raw2.shape[1]))
print((raw2.shape[0], raw2.shape[1]))
for m in range(0, len(re)):
x1 = re[m][0][0]
x2 = re[m][1][0]
y1 = re[m][0][1]
y2 = re[m][1][1]
# x2 = re[m + 1][1][0]
# x2 = re[m + 1][1][0]
# y2 = re[m + 1][1][1]
# y2 = re[m + 1][1][1]
# plt.scatter((x1 + x2) / 2, (y1 + y2) / 2, c='r')
yy = (y1 + y2)
xx = (x1 + x2)
if yy % 2 == 0:
yy = int((y1 + y2) / 2)
xx = (x1 + x2) / 2
# xx = ((y1 + y2))
# yy = ((x1 + x2))
if xx % 2 == 0:
xx = int((x1 + x2) / 2)
yy = (y1 + y2) / 2
print((xx, yy))
fix_tag(gray, xx, yy)
np.savetxt("D:\\tag" + ".csv", gray, fmt="%d", delimiter=',')
for i in range(0, gray.shape[0] - 4, 4):
for j in range(0, gray.shape[1] - 4, 4):
verify_close(gray, i, j)
np.savetxt("D:\\re_local" + ".csv", gray, fmt="%d", delimiter=',')
for i in range(gray.shape[0]):
for j in range(gray.shape[1]):
if gray[i, j] == 1:
gray[i, j] = 255
cv2.imwrite("D:\\re_local.jpg", gray)
re_x = []
re_y = []
print(re)
for m in range(0, len(re)):
x1 = re[m][0][0]
x2 = re[m][1][0]
y1 = re[m][0][1]
y2 = re[m][1][1]
# x2 = re[m + 1][1][0]
# x2 = re[m + 1][1][0]
# y2 = re[m + 1][1][1]
# y2 = re[m + 1][1][1]
# plt.scatter((x1 + x2) / 2, (y1 + y2) / 2, c='r')
yy = (y1 + y2)
xx = (x1 + x2)
if yy % 2 == 0:
yy = int((y1 + y2) / 2)
xx = (x1 + x2) / 2
# xx = ((y1 + y2))
# yy = ((x1 + x2))
if xx % 2 == 0:
xx = int((x1 + x2) / 2)
yy = (y1 + y2) / 2
if isinstance(yy, int) and gray[int(xx + 0.5), yy] == 255 and gray[int(xx - 0.5), yy] == 255:
# gray[int(xx + 0.5), yy] = 0
# gray[int(xx - 0.5), yy] = 0
print(1)
re_x.append(xx)
re_y.append(yy)
if isinstance(xx, int) and gray[xx, int(yy + 0.5)] == 255 and gray[xx, int(yy - 0.5)] == 255:
# gray[xx, int(yy + 0.5)] = 0
# gray[xx, int(yy - 0.5)] = 0
print(2)
re_x.append(xx)
re_y.append(yy)
print(re_x)
print(re_y)
plt.scatter(re_y, re_x, s=0.1, c='r')
plt.gca().invert_yaxis()
plt.savefig("D:\\re_local_line" + src,
dpi=1000) # 指定分辨率保存
# if gray[xx,yy] == 1:
# print(gray)
# fix_tag(gray, 2.5, 0)
# fix_tag(gray, 2.5, 1)
# fix_tag(gray, 2.5, 2)
# fix_tag(gray, 2.5, 3)
# fix_tag(gray, 2.5, 4)
# print(gray)
# verify_close(gray, 0, 0)
# print(gray)