-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodify_rgb_Accumulative_multiple_thresholds.py
730 lines (691 loc) · 25.7 KB
/
modify_rgb_Accumulative_multiple_thresholds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
# Accumulative multiple thresholds
import numpy as np
import time
# class point:
# def __init__(self):
# self.value = 0
# self.rgb = [0,0,0]
def line_energy(p1, p2):
return (p1 - p2) * (p1 - p2)
def line_energy_rgb(p1, p2):
count = 0
for i in range(3):
count += line_energy(p1[i], p2[i])
return count
# 找八邻域点,组成列表
# 参数:灰度矩阵,rgb矩阵,像素点坐标,邻域个数
# 得到:邻域点(值)列表,邻域点rgb的列表
def point_list(gray, rgb, i, j, num=8):
lists = []
addr = [] # 在gray中的坐标
lists_rgb = []
if num == 8:
lists = [] # 八邻域灰度值从左上开始沿顺时针方向排列
addr = [] # 在gray中的坐标
lists_rgb = []
lists.extend(
[gray[i - 1, j - 1], gray[i - 1, j], gray[i - 1, j + 1], gray[i, j + 1], gray[i + 1, j + 1], gray[i + 1, j],
gray[i + 1, j - 1], gray[i, j - 1]])
lists = [int(i) for i in lists]
lists_rgb.extend(
[rgb[i - 1, j - 1], rgb[i - 1, j], rgb[i - 1, j + 1], rgb[i, j + 1], rgb[i + 1, j + 1], rgb[i + 1, j],
rgb[i + 1, j - 1], rgb[i, j - 1]])
lists_rgb = [[int(i[0]), int(i[1]), int(i[2])] for i in lists_rgb]
addr.extend(((i - 1, j - 1), (i - 1, j), (i - 1, j + 1), (i, j + 1), (i + 1, j + 1), (i + 1, j), (i + 1, j - 1),
(i, j - 1)))
if num == 16:
lists = [] # 八邻域灰度值从左上开始沿顺时针方向排列
addr = []
lists_rgb = []
lists.extend([gray[i - 2, j - 2], gray[i - 2, j - 1], gray[i - 2, j], gray[i - 2, j + 1], gray[i - 2, j + 2],
gray[i - 1, j + 2], gray[i, j + 2], gray[i + 1, j + 2], gray[i + 2, j + 2], gray[i + 2, j + 1],
gray[i + 2, j], gray[i + 2, j - 1], gray[i + 2, j - 2], gray[i + 1, j - 2], gray[i, j - 2],
gray[i - 1, j - 2]])
lists = [int(i) for i in lists]
lists_rgb.extend([rgb[i - 2, j - 2], rgb[i - 2, j - 1], rgb[i - 2, j], rgb[i - 2, j + 1], rgb[i - 2, j + 2],
rgb[i - 1, j + 2], rgb[i, j + 2], rgb[i + 1, j + 2], rgb[i + 2, j + 2], rgb[i + 2, j + 1],
rgb[i + 2, j], rgb[i + 2, j - 1], rgb[i + 2, j - 2], rgb[i + 1, j - 2], rgb[i, j - 2],
rgb[i - 1, j - 2]])
lists_rgb = [[int(i[0]), int(i[1]), int(i[2])] for i in lists_rgb]
addr.extend(((i - 2, j - 2), (i - 2, j - 1), (i - 2, j), (i - 2, j + 1), (i - 2, j + 2), (i - 1, j + 2),
(i, j + 2), (i + 1, j + 2), (i + 2, j + 2), (i + 2, j + 1), (i + 2, j), (i + 2, j - 1),
(i + 2, j - 2), (i + 1, j - 2), (i, j - 2), (i - 1, j - 2)))
return lists, addr, lists_rgb
def least_energy(point_list, point_list_rgb):
line = [] # 存放边的能量
for p in range(-1, len(point_list) - 1):
line.append(line_energy_rgb(point_list_rgb[p], point_list_rgb[p + 1]))
line_1 = line[:] # 副本
a = []
b = []
a_index = []
b_index = []
del_large_index = [] # 存储边最大的index
del_large_index_2 = []
max_count = line.count(max(line)) # 最大值同时有几个
max_diff = max(line) # 最大的边的差值
start = 0
for i in range(len(line)):
if line[i] == max_diff: # 如果是最大的值
del_large_index.append(i)
start = i + 1
# print(max_count, "max_index", del_large_index)
line_1.sort(reverse=1)
# print(line_1)
flag = 0
be = line_1[0]
for i in range(1, len(line_1)):
if line_1[i] == be:
continue
else:
flag = 1
break
if flag == 0: # 所有一个值
# print("!!!!!!!!!")
energy = 0
a.append(point_list[0])
b.append(point_list[1:])
a_index.append(0)
for ii in range(1, len(point_list)):
b_index.append(ii)
return energy, a, b, a_index, b_index
else:
max_diff_2 = line_1[max_count]
max_count_2 = line_1.count(max_diff_2)
for i in range(len(line)):
if line[i] == max_diff_2: # 如果是最大的值
del_large_index_2.append(i)
start = i + 1
# print(max_count_2, "max_index_2", del_large_index_2)
# print("!!!del_large_index, del_large_index_2 ", del_large_index, del_large_index_2)
energy = sum(line) - max_diff - max_diff_2
a_b_diff = [] # 存储每种搭配下ab两区的差值
if (len(del_large_index) >= 2): # 最大的值不止一个
for i in del_large_index:
mm = del_large_index.index(i)
for j in del_large_index[mm + 1:]:
temp_a = []
temp_b = []
if i < j:
temp_a.extend(point_list[i:j])
temp_b.extend(point_list[0:i])
temp_b.extend(point_list[j:len(point_list)])
else:
temp_a.extend(point_list[j:i])
temp_b.extend(point_list[0:j])
temp_b.extend(point_list[i:len(point_list)])
# print(temp_a, temp_b)
diff = abs(sum(temp_a) / len(temp_a) - sum(temp_b) / len(temp_b))
a_b_diff.append((diff, i, j))
else:
for i in del_large_index:
for j in del_large_index_2:
temp_a = []
temp_b = []
if i < j:
temp_a.extend(point_list[i:j])
temp_b.extend(point_list[0:i])
temp_b.extend(point_list[j:len(point_list)])
else:
temp_a.extend(point_list[j:i])
temp_b.extend(point_list[0:j])
temp_b.extend(point_list[i:len(point_list)])
# print(temp_a, temp_b)
diff = abs(sum(temp_a) / len(temp_a) - sum(temp_b) / len(temp_b))
a_b_diff.append((diff, i, j))
# print(a_b_diff)
# 分区差别最大的一组
max_index = a_b_diff.index(max(a_b_diff))
# print(a_b_diff[max_index])
max_i = a_b_diff[max_index][1]
max_j = a_b_diff[max_index][2]
if max_i < max_j:
a.extend(point_list[max_i:max_j])
for ii in range(max_i, max_j):
a_index.append(ii)
b.extend(point_list[0:max_i])
for ii in range(0, max_i):
b_index.append(ii)
b.extend(point_list[max_j:len(point_list)])
for ii in range(max_j, len(point_list)):
b_index.append(ii)
else:
a.extend(point_list[max_j:max_i])
for ii in range(max_j, max_i):
a_index.append(ii)
b.extend(point_list[0:max_j])
for ii in range(0, max_j):
b_index.append(ii)
b.extend(point_list[max_i:len(point_list)])
for ii in range(max_i, len(point_list)):
b_index.append(ii)
return energy, a, b, a_index, b_index
# 根据中心点像素和与之的相对位置求八邻域点内的坐标
# 参数:中心像素点坐标,相对位置(从左上为0顺指针标记),邻域个数
# 得到:邻域点像素
def find_index(i, j, x, num=8):
ii = 0
jj = 0
if num == 8:
if ((x == 0) | (x == 1) | (x == 2)):
ii = i - 1
if ((x == 4) | (x == 5) | (x == 6)):
ii = i + 1
if ((x == 3) | (x == 7)):
ii = i
if ((x == 0) | (x == 6) | (x == 7)):
jj = j - 1
if ((x == 2) | (x == 3) | (x == 4)):
jj = j + 1
if ((x == 1) | (x == 5)):
jj = j
if num == 16:
if ((x == 0) | (x == 1) | (x == 2) | (x == 3) | (x == 4)):
ii = i - 2
if ((x == 5) | (x == 15)):
ii = i - 1
if ((x == 6) | (x == 14)):
ii = i
if ((x == 7) | (x == 13)):
ii = i + 1
if ((x == 8) | (x == 9) | (x == 10) | (x == 11) | (x == 12)):
ii = i + 2
if ((x == 0) | (x == 15) | (x == 14) | (x == 13) | (x == 12)):
jj = j - 2
if ((x == 1) | (x == 11)):
jj = j - 1
if ((x == 2) | (x == 10)):
jj = j
if ((x == 3) | (x == 9)):
jj = j + 1
if ((x == 4) | (x == 5) | (x == 6) | (x == 7) | (x == 8)):
jj = j + 2
return ii, jj
# 邻域内定位最有可能的噪声
# 参数:灰度矩阵图,像素点坐标,邻域个数
# 得到:噪声像素在八邻域中的位置
def find_noise(gray, rgb, i, j, num=8):
energy_list = []
point_lists = point_list(gray, rgb, i, j, num)[0]
rgb_lists = point_list(gray, rgb, i, j, num)[2]
# print("point_list",point_list)
for x in range(len(point_lists)):
li = point_lists[:]
del li[x]
# print(li)
# print(least_energy(li)[0])
energy_list.append(least_energy(li, rgb_lists)[0])
# print(energy_list)
minn = energy_list.index(min(energy_list))
# print(point_lists)
# 当只有一个数字不一样的时候(特殊情况)
sorted_list = sorted(point_lists)
flag = 1
mid = sorted_list[1:-1] # 除开第一个和最后一个
avg = sum(mid) / len(mid)
for men in mid:
if men != avg:
flag = 0
break
if flag == 1:
if ((avg == sorted_list[0]) & (avg != sorted_list[-1])):
minn = point_lists.index(sorted_list[-1])
elif ((avg == sorted_list[-1]) & (avg != sorted_list[0])):
minn = point_lists.index(sorted_list[0])
return minn
# # 每个八邻域内定位3个最有可能噪声点
# # 参数:灰度矩阵图,中心像素坐标,假设八邻域中可能含有的噪声个数,3*3的八邻域或者是5*5的24邻域
# # 得到:三个噪声点,A,B区与中心像素的坐标
# # 如果噪声相同值多个,按顺序删除
# def point_classification(gray, i, j, count, num=8):
# list_point = point_list(gray, i, j, num)[0] # 初始的八邻域
# e_point_1 = list_point[:] # 副本
# e_point = list_point[:] # 副本
# e_point.reverse()
# point_lists = list_point[:] # point_list作为副本,负责三次减去噪声
# minn = [] # 获取定位到的噪声在gray中的坐标
# rest_a = [] # 获取出3个噪声点外的a区点灰度值
# rest_b = [] # 获取出3个噪声点外的b区点灰度值
# a = [] # a区的index
# b = [] # b区的index
# noise = [] # 噪声的index
# while (count > 0): # 计数3次
# energy_list = [] # 存储边的能量
# # 获取一个噪声
# for x in range(len(point_lists)):
# li = point_lists[:]
# lli = point_lists[:]
# del li[x]
# energy_list.append(least_energy(li)[0])
# noise_index = energy_list.index(min(energy_list)) # 得到噪声的领域index
# sorted_list = sorted(point_lists)
# flag = 1
# mid = sorted_list[1:-1] # 除开第一个和最后一个
# avg = sum(mid) / len(mid)
# for men in mid:
# if men != avg:
# flag = 0
# break
# if flag == 1:
# if ((avg == sorted_list[0]) & (avg != sorted_list[-1])):
# noise_index = point_lists.index(sorted_list[-1])
# elif ((avg == sorted_list[-1]) & (avg != sorted_list[0])):
# noise_index = point_lists.index(sorted_list[0])
# for ii in noise:
# # print('i=',i)
# if noise_index >= ii:
# noise_index = noise_index + 1
# else:
# break
# noise.append(noise_index)
# noise.sort()
# minn.append(find_index(i, j, noise_index, num))
# del point_lists[energy_list.index(min(energy_list))] # 删去定位噪声,剩下的邻域为下一次定位噪声做准备
# count = count - 1
# if count == 0:
# least = least_energy(point_lists)
# rest_a.extend(least[3])
# rest_b.extend(least[4])
# for ii in rest_a:
# for iii in noise:
# if ii >= iii:
# ii = ii + 1
# a.append(find_index(i, j, ii, num))
# for ii in rest_b:
# for iii in noise:
# if ii >= iii:
# ii = ii + 1
# b.append(find_index(i, j, ii, num))
# return minn, a, b
# 每个八邻域内定位3个最有可能噪声点
# 参数:灰度矩阵图,中心像素坐标
# 得到:三个噪声点,A,B区与中心像素的坐标
# 如果噪声相同值多个,会删除那个比较多的区域的像素点
def point_classification(gray, rgb, i, j, count, num=8):
list_point = point_list(gray, rgb, i, j, num)[0] # 初始的八邻域
list_rgb = point_list(gray, rgb, i, j, num)[2]
e_point_1 = list_point[:] # 副本
e_point = list_point[:] # 副本
e_point.reverse()
point_lists = list_point[:] # point_list作为副本,负责三次减去噪声
minn = [] # 获取定位到的噪声在gray中的坐标
rest_a = [] # 获取出3个噪声点外的a区点灰度值
rest_b = [] # 获取出3个噪声点外的b区点灰度值
a = [] # a区的index
b = [] # b区的index
noise = [] # 噪声的index
while (count > 0): # 计数3次
energy_list = [] # 存储边的能量
# 获取一个噪声
for x in range(len(point_lists)):
li = point_lists[:]
lli = point_lists[:]
del li[x]
energy_list.append(least_energy(li, list_rgb)[0])
noise_index = energy_list.index(min(energy_list)) # 得到噪声的领域index
sorted_list = sorted(point_lists)
flag = 1
mid = sorted_list[1:-1] # 除开第一个和最后一个
avg = sum(mid) / len(mid)
for men in mid:
if men != avg:
flag = 0
break
if flag == 1:
if ((avg == sorted_list[0]) & (avg != sorted_list[-1])):
noise_index = point_lists.index(sorted_list[-1])
elif ((avg == sorted_list[-1]) & (avg != sorted_list[0])):
noise_index = point_lists.index(sorted_list[0])
for ii in noise:
# print('i=',i)
if noise_index >= ii:
noise_index = noise_index + 1
else:
break
noise.append(noise_index)
noise.sort()
minn.append(find_index(i, j, noise_index, num))
temp = energy_list.index(min(energy_list))
del point_lists[temp] # 删去定位噪声,剩下的邻域为下一次定位噪声做准备
del list_rgb[temp]
count = count - 1
if (count == 0):
# print("point_list", point_lists)
least = least_energy(point_lists, list_rgb)
rest_a.extend(least[3])
rest_b.extend(least[4])
# 噪声count不为0的情况
if noise is not None:
for ii in rest_a:
for iii in noise:
if ii >= iii:
ii = ii + 1
a.append(find_index(i, j, ii, num))
for ii in rest_b:
for iii in noise:
if ii >= iii:
ii = ii + 1
b.append(find_index(i, j, ii, num))
# 噪声count为0的情况
else:
a = rest_a
b = rest_b
return minn, a, b
# 通过三通道计算像素点的区分度的绝对值
def gradient_average_abs_rgb(gray, rgb, count, num=8):
re = np.zeros((gray.shape[0], gray.shape[1]))
for k in range(1, gray.shape[0] - 1):
for l in range(1, gray.shape[1] - 1):
noise, a, b = point_classification(gray, rgb, k, l, count, num=8)
sum_a_0 = 0
sum_a_1 = 0
sum_a_2 = 0
sum_b_0 = 0
sum_b_1 = 0
sum_b_2 = 0
for i in a:
sum_a_0 += rgb[i[0]][i[1]][0]
sum_a_1 += rgb[i[0]][i[1]][1]
sum_a_2 += rgb[i[0]][i[1]][2]
for i in b:
sum_b_0 += rgb[i[0]][i[1]][0]
sum_b_1 += rgb[i[0]][i[1]][1]
sum_b_2 += rgb[i[0]][i[1]][2]
diffa = ((sum_a_0 / len(a) - sum_b_0 / len(b)) + (sum_a_1 / len(a) - sum_b_1 / len(b)) + (
sum_a_2 / len(a) - sum_b_2 / len(b))) / 3
diffb = -((sum_a_0 / len(a) - sum_b_0 / len(b)) + (sum_a_1 / len(a) - sum_b_1 / len(b)) + (
sum_a_2 / len(a) - sum_b_2 / len(b))) / 3
re[k, l] = abs(int(diffa))
return re
####################################################################
####################################################################10.19
# 遍历灰度矩阵并计数标记,噪声点+0,内部点+1,小边点+10,大边点+100,num为邻域个数,count为每次取噪声个数
def score(gray, rgb, count, num=8):
th = 10
scores = np.zeros((gray.shape[0], gray.shape[1])) # 初始化为0
total_noise = []
# mark = [[[[]]*3]*width]*length
# print(gray.shape[0])
for k in range(1, gray.shape[0] - 1):
for l in range(1, gray.shape[1] - 1):
# print(i)
noise, a, b = point_classification(gray, rgb, k, l, count, num) # 根据中心像素点得到八邻域中的噪声,a,b区坐标
# print(a,b)
total_noise.extend(noise)
# print(noise,a,b)
num_a = []
num_b = []
for i in a:
num_a.append(gray[i[0]][i[1]])
for i in b:
num_b.append(gray[i[0]][i[1]])
# print(num_a,num_b)
# if((len(num_b) == 0)|(len(num_a) == 0)):
# print('AAAAAAAAA',k,l)
# # gray[k][l] = 0
# # continue
# print(num_a,num_b)
# print(type(a),type(max(num_a)),num_a ,num_b,type(int(max(num_a)-min(num_b))))
if ((min(num_a) > max(num_b)) & (max(num_a) - min(num_b) > th)): # a区的点设为大边点, b区为小边点, 5为假设!!!!!!!!!!!!!!!!!
for i in a:
scores[i[0]][i[1]] = scores[i[0]][i[1]] + 100
# mark[k][l][0].append(i)
for i in b:
scores[i[0]][i[1]] = scores[i[0]][i[1]] + 10
# mark[k][l][1].append(i)
elif ((min(num_b) > max(num_a)) & (max(num_b) - min(num_a) > th)): # b区的点设为大边点,a区为小边点
for i in a:
scores[i[0]][i[1]] = scores[i[0]][i[1]] + 10
# mark[k][l][1].append(i)
for i in b:
scores[i[0]][i[1]] = scores[i[0]][i[1]] + 100
# mark[k][l][0].append(i)
elif (((min(num_a) >= max(num_b)) & (max(num_a) - min(num_b) <= th)) | (
(min(num_b) >= max(num_a)) & (max(num_b) - min(num_a) <= th)) | (
(max(num_a) >= min(num_b)) & (min(num_b) >= min(num_a))) | (
(max(num_b) >= min(num_a)) & (min(num_a) >= min(num_b)))): # a,b算内部点,
for i in a:
# print(scores[i[0]][i[1]])
scores[i[0]][i[1]] = scores[i[0]][i[1]] + 1.0
# mark[k][l][2].append(i)
for i in b:
scores[i[0]][i[1]] = scores[i[0]][i[1]] + 1.0
# mark[k][l][2].append(i)
return scores, total_noise # , mark
# 参数:灰度矩阵图,每次取噪声个数
# 得到:噪声矩阵,积分矩阵, 矛盾点二值矩阵,初始大边点二值矩阵,初始小边点二值矩阵
# 其中噪声矩阵是每个像素点被判断为噪声点的次数的矩阵
def noise_array(gray, rgb, ccount, th1, th2, num=8):
# count=0
length = gray.shape[0]
width = gray.shape[1]
noise = np.zeros((length, width, th2 - th1)) # 初始化为0
# start1 = time.clock()
score_array_1 = score_new(gray, rgb, ccount, th1, th2, num)[0] # 有值
# np.savetxt("D:\\ score_array_1.csv", score_array_1, fmt="%d", delimiter=',')
# end1 = time.clock()
# print(str(end1 - start1))
# start2 = time.clock()
# print(score_array_1)
score_array_2 = np.zeros((length, width, 6, th2 - th1)) # 全0
contradiction_array = np.zeros((length, width, th2 - th1))
edge_big = np.zeros((length, width, th2 - th1))
edge_small = np.zeros((length, width, th2 - th1))
for th in range(th2 - th1):
for i in range(1, length - 1):
for j in range(1, width - 1):
# print(i,j)
score_array_2[i][j][0][th] = score_array_1[i][j][th] // 100 # [0, 0, 0]中第一个值 大边点
score_array_2[i][j][1][th] = score_array_1[i][j][th] // 10 % 10 # 小边点
score_array_2[i][j][2][th] = score_array_1[i][j][th] % 10 # 内部点
# score_array_2[i][j][5][th] = list(score_array_2[i][j][th]).index(
# max(score_array_2[i][j][0:3][th])) # 三个系数哪个大,哪个做标记
if (score_array_2[i][j][0][th] > 0) & (score_array_2[i][j][1][th] == 0): # 大边点
score_array_2[i][j][3][th] = 2
edge_big[i][j][th] = 1
if (score_array_2[i][j][1][th] > 0) & (score_array_2[i][j][0][th] == 0): # 小边点
score_array_2[i][j][3][th] = 1
edge_small[i][j][th] = 1
if score_array_2[i][j][0][th] * score_array_2[i][j][1][th] > 0:
contradiction_array[i][j][th] = 1
score_array_2[i][j][4][th] = 1 # 标记是否为矛盾点
else:
contradiction_array[i][j][th] = 0
count_noise = num - score_array_2[i][j][0][th] - score_array_2[i][j][1][th] - score_array_2[i][j][2][th]
noise[i][j][th] = count_noise
# if noise[i][j]<0:
# count+=1
# print( score_array_2[i][j])
# end2 = time.clock()
# print(str(end2 - start2))
return noise, score_array_2, contradiction_array, edge_big, edge_small # ,count
# 遍历灰度矩阵并计数标记,噪声点+0,内部点+1,小边点+10,大边点+100,num为邻域个数,count为每次取噪声个数
def score_new(gray, rgb, count, th1, th2, num=8):
# th = 5
scores = np.zeros((gray.shape[0], gray.shape[1], th2 - th1)) # 初始化为0
total_noise = []
layer = 0
for th in range(th1, th2):
for k in range(1, gray.shape[0] - 1):
for l in range(1, gray.shape[1] - 1):
noise, a, b = point_classification(gray, rgb, k, l, count, num) # 根据中心像素点得到八邻域中的噪声,a,b区坐标
total_noise.extend(noise)
num_a = []
num_b = []
sum_a_0 = 0
sum_a_1 = 0
sum_a_2 = 0
sum_b_0 = 0
sum_b_1 = 0
sum_b_2 = 0
for i in a:
# num_a.append(gray[i[0]][i[1]])
sumrgb = 0
# for p in range(3):
# sumrgb+=rgb[i[0]][i[1]][p]
sum_a_0 += rgb[i[0]][i[1]][0]
sum_a_1 += rgb[i[0]][i[1]][1]
sum_a_2 += rgb[i[0]][i[1]][2]
# num_a.append(sumrgb)
for i in b:
# num_b.append(gray[i[0]][i[1]])
sumrgb = 0
# for p in range(3):
# sumrgb += rgb[i[0]][i[1]][p]
# num_b.append(sumrgb)
sum_b_0 += rgb[i[0]][i[1]][0]
sum_b_1 += rgb[i[0]][i[1]][1]
sum_b_2 += rgb[i[0]][i[1]][2]
# avg_a = sum(num_a) / len(num_a)
# avg_b = sum(num_b) / len(num_b)
# avg_a = avg_a/3
# avg_b = avg_b/3
# diff = (abs(sum_a_0-sum_b_0)+abs(sum_a_1-sum_b_1)+abs(sum_a_2-sum_b_2))/3
diffa = ((sum_a_0 / len(a) - sum_b_0 / len(b)) + (sum_a_1 / len(a) - sum_b_1 / len(b)) + (
sum_a_2 / len(a) - sum_b_2 / len(b))) / 3
diffb = -((sum_a_0 / len(a) - sum_b_0 / len(b)) + (sum_a_1 / len(a) - sum_b_1 / len(b)) + (
sum_a_2 / len(a) - sum_b_2 / len(b))) / 3
# if k == 16 and l == 8:
# for m in a:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# for m in b:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# print(avg_a, end=" ")
# print(avg_b, end=" ")
# print(avg_a - avg_b)
# print()
#
# if k == 16 and l == 9:
# for m in a:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# for m in b:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# print(avg_a, end=" ")
# print(avg_b, end=" ")
# print(avg_a - avg_b)
# print()
#
# if k == 16 and l == 10:
# for m in a:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# for m in b:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# print(avg_a, end=" ")
# print(avg_b, end=" ")
# print(avg_a - avg_b)
# print()
#
# if k == 17 and l == 8:
# for m in a:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# for m in b:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# print(avg_a, end=" ")
# print(avg_b, end=" ")
# print(avg_a - avg_b)
# print()
#
# if k == 17 and l == 10:
# for m in a:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# for m in b:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# print(avg_a, end=" ")
# print(avg_b, end=" ")
# print(avg_a - avg_b)
# print()
#
# if k == 18 and l == 8:
# for m in a:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# for m in b:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# print(avg_a, end=" ")
# print(avg_b, end=" ")
# print(avg_a - avg_b)
# print()
#
# if k == 18 and l == 9:
# for m in a:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# for m in b:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# print(avg_a, end=" ")
# print(avg_b, end=" ")
# print(avg_a - avg_b)
# print()
#
# if k == 18 and l == 10:
# for m in a:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# for m in b:
# print(gray[m[0]][m[1]], end=" ")
# print(m, end=" ")
# print()
# print(avg_a, end=" ")
# print(avg_b, end=" ")
# print(avg_a - avg_b)
# print()
# if (min(num_a) >= max(num_b)) and (abs(avg_a - avg_b) > th): # a区的点设为大边点, b区为小边点, 5为假设!!!!!!!!!!!!!!!!!
# if avg_a - avg_b > th: # a区的点设为大边点, b区为小边点, 5为假设!!!!!!!!!!!!!!!!!
if diffa > th: # a区的点设为大边点, b区为小边点, 5为假设!!!!!!!!!!!!!!!!!
for i in a:
scores[i[0]][i[1]][layer] = scores[i[0]][i[1]][layer] + 100
if i[0] == 17 and i[1] == 9:
print("大")
for i in b:
scores[i[0]][i[1]][layer] = scores[i[0]][i[1]][layer] + 10
if i[0] == 17 and i[1] == 9:
print("小")
# if (min(num_b) >= max(num_a)) and (abs(avg_b - avg_a) > th): # b区的点设为大边点,a区为小边点
# elif avg_b - avg_a > th: # b区的点设为大边点,a区为小边点
elif diffb > th: # b区的点设为大边点,a区为小边点
for i in a:
scores[i[0]][i[1]][layer] = scores[i[0]][i[1]][layer] + 10
if i[0] == 17 and i[1] == 9:
print("小")
for i in b:
scores[i[0]][i[1]][layer] = scores[i[0]][i[1]][layer] + 100
if i[0] == 17 and i[1] == 9:
print("大")
# elif (((min(num_a) >= max(num_b)) and (abs(avg_a - avg_b) <= th)) | (
# (min(num_b) >= max(num_a)) and (abs(avg_b - avg_a) <= th)) | (
# (max(num_a) >= min(num_b)) and (min(num_b) >= min(num_a))) | (
# (max(num_b) >= min(num_a)) and (min(num_a) >= min(num_b)))): # a,b算内部点,
else:
for i in a:
scores[i[0]][i[1]][layer] = scores[i[0]][i[1]][layer] + 1.0
for i in b:
scores[i[0]][i[1]][layer] = scores[i[0]][i[1]][layer] + 1.0
layer += 1
return scores, total_noise