-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMLP_Model.py
64 lines (44 loc) · 1.71 KB
/
MLP_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import keras
from keras.datasets import reuters
(x_train, y_train), (x_test, y_test) = reuters.load_data(num_words=None, test_split=0.2)
word_index = reuters.get_word_index(path="reuters_word_index.json")
print('# of Training Samples: {}'.format(len(x_train)))
print('# of Test Samples: {}'.format(len(x_test)))
num_classes = max(y_train) + 1
print('# of Classes: {}'.format(num_classes))
# of Training Samples: 8982
# of Test Samples: 2246
# of Classes: 46
index_to_word = {}
for key, value in word_index.items():
index_to_word[value] = key
print(' '.join([index_to_word[x] for x in x_train[0]]))
print(y_train[0])
from keras.preprocessing.text import Tokenizer
max_words = 10000
tokenizer = Tokenizer(num_words=max_words)
x_train = tokenizer.sequences_to_matrix(x_train, mode='binary')
x_test = tokenizer.sequences_to_matrix(x_test, mode='binary')
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
print(x_train[0])
print(len(x_train[0]))
print(y_train[0])
print(len(y_train[0]))
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
model = Sequential()
model.add(Dense(512, input_shape=(max_words,)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.metrics_names)
['loss', 'acc']
batch_size = 32
epochs = 3
history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_split=0.1)
score = model.evaluate(x_test, y_test, batch_size=batch_size, verbose=1)
print('Test loss:', score[0])
print('Test accuracy:', score[1])