-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate_splits.py
81 lines (65 loc) · 3.53 KB
/
create_splits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import pandas as pd
import numpy as np
from datasets.dataset_generic import Generic_WSI_Classification_Dataset, save_splits
import argparse
parser = argparse.ArgumentParser(description='Creating splits for whole slide classification')
parser.add_argument('--label_frac', type=float, default= -1,
help='fraction of labels (default: [0.25, 0.5, 0.75, 1.0])')
parser.add_argument('--seed', type=int, default=1,
help='random seed (default: 1)')
parser.add_argument('--k', type=int, default=10,
help='number of splits (default: 10)')
parser.add_argument('--task', type=str,
choices=['kidney-mtl'])
parser.add_argument('--hold_out_test', action='store_true', default=False,
help='hold-out the test set for each split')
parser.add_argument('--split_code', type=str, default=None)
args = parser.parse_args()
if args.task == 'kidney-mtl':
dataset = Generic_WSI_Classification_Dataset(csv_path = 'dataset_csv/KidneySplits_all_slides.csv',
shuffle = False,
seed = args.seed,
print_info = True,
label_dict = {'cell_no_amr_mild_ifta':0, 'cell_amr_moderate_ifta':1 ,'no_cell_no_amr_mild_ifta':2,
'no_cell_amr_moderate_ifta':3, 'no_cell_amr_mild_ifta':4, 'cell_amr_mild_ifta':5,
'cell_no_amr_moderate_ifta':6, 'no_cell_no_amr_moderate_ifta':7, 'no_cell_amr_advanced_ifta':8,
'no_cell_no_amr_advanced_ifta':9, 'cell_amr_advanced_ifta':10, 'cell_no_amr_advanced_ifta':11},
patient_strat= True,
ignore=[])
p_val = 0.1 # use 10% of data in validation
p_test = 0.2 # use 20% data for test set
else:
raise NotImplementedError
# splits
num_slides_cls = np.array([len(cls_ids) for cls_ids in dataset.patient_cls_ids])
val_num = np.floor(num_slides_cls * p_val).astype(int) # use 10% data in validation
test_num = np.floor(num_slides_cls * p_test).astype(int) # use 20% for test set
print("---------------------------------")
print(f"num slides = {num_slides_cls} ")
print(f"validation set size = {val_num} ")
print(f"test set size = {test_num}")
print("---------------------------------")
if __name__ == '__main__':
if args.label_frac > 0:
label_fracs = [args.label_frac]
else:
label_fracs = [0.25, 0.5, 0.75, 1.0]
if args.hold_out_test:
custom_test_ids = dataset.sample_held_out(test_num=test_num)
else:
custom_test_ids = None
for lf in label_fracs:
if args.split_code is not None:
split_dir = 'splits/'+ str(args.split_code) + '_{}'.format(int(lf * 100))
else:
split_dir = 'splits/'+ str(args.task) + '_{}'.format(int(lf * 100))
os.makedirs(split_dir, exist_ok=True)
dataset.create_splits(k = args.k, val_num = val_num, test_num = test_num, label_frac=lf, custom_test_ids=custom_test_ids)
for i in range(args.k):
dataset.set_splits()
descriptor_df = dataset.test_split_gen(return_descriptor=True)
splits = dataset.return_splits(from_id=True)
save_splits(splits, ['train', 'val','test'], os.path.join(split_dir, 'splits_{}.csv'.format(i)))
save_splits(splits, ['train', 'val','test'], os.path.join(split_dir, 'splits_{}_bool.csv'.format(i)), boolean_style=True)
descriptor_df.to_csv(os.path.join(split_dir, 'splits_{}_descriptor.csv'.format(i)))