-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
163 lines (155 loc) · 5.31 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import datetime
import pickle
from typing import cast
import pandas as pd
import plotly.graph_objects as go
import streamlit as st
from plotly.subplots import make_subplots
from algo_neoquantxperience.common_constants import (
ALGOPACK_AVAILABLE_INDEXES, TOP45)
from algo_neoquantxperience.moexalgopack.utils import get_candles
from algo_neoquantxperience.nlp.score import (get_scores_from_llm,
get_scores_from_source)
from algo_neoquantxperience.nlp.utils import (get_df_from_ticker_news_map,
get_df_sentiment_with_diffs,
remove_past)
st.set_page_config(layout="wide")
st.title("Анализ новостного фона")
l1, l2, l3 = st.columns((0.3, 0.3, 0.3))
date_start = l1.text_input("Start date", value="2023-06-01")
date_end = l2.text_input("End date", value="2024-01-01")
period = cast(str, l3.selectbox("Period", options=["10m", "1h", "D", "W"], index=2))
ticker = cast(str, st.selectbox("Choose ticker", options=TOP45, index=9))
with open("data/nlp/ticker_news_map_with_scores.pkl", "rb") as handle:
ticker_news_map_base = pickle.load(handle)
with open("news.pkl", "rb") as handle:
ticker_news_map = pickle.load(handle)
ticker_news_map = {ticker: ticker_news_map[ticker]}
ticker_news_map = get_scores_from_source(ticker_news_map, ticker_news_map_base)
ticker_news_map = get_scores_from_llm(ticker_news_map)
ticker_news_map = remove_past(
ticker_news_map,
start_date=datetime.datetime(
*[int(t) for t in date_start.split("-")], tzinfo=datetime.timezone.utc
),
)
df_scores = get_df_from_ticker_news_map(
ticker_news_map, rerank=False, remove_template=True
)
df_scores = df_scores.loc[df_scores["date"] <= date_end]
m1, m2 = st.columns((1, 1))
indexes = [k + "__" + v for k, v in ALGOPACK_AVAILABLE_INDEXES.items()]
index = cast(str, m1.selectbox("Choose index", options=indexes, index=6)).split("__")[0]
# m2.text(ALGOPACK_AVAILABLE_INDEXES[index])
df_candles_stocks = get_candles(
ticker,
date_start=date_start,
date_end=date_end,
period=period,
)
df_candles_index = get_candles(
index,
date_start=date_start,
date_end=date_end,
period=period,
)
# m1.title("Цена акции")
fig = make_subplots(rows=4, cols=1, shared_xaxes=True, vertical_spacing=0.02)
fig.add_trace(
go.Scatter(
x=df_candles_index.begin, y=df_candles_index.close, name=f"Индекс {index} close"
),
row=1,
col=1,
)
fig.add_trace(
go.Scatter(
x=df_candles_stocks.begin,
y=df_candles_stocks.close,
name=f"Цена акции {ticker} close",
),
row=2,
col=1,
)
df_rolling_mean = (
df_scores.set_index("date")["score"]
.resample("1d")
.mean()
.fillna(0)
.rolling(5)
.mean()
)
fig.add_trace(
go.Scatter(
x=df_rolling_mean.index,
y=df_rolling_mean,
name="Новостной фон",
),
row=3,
col=1,
)
fig.add_trace(
go.Candlestick(
x=df_scores.date,
open=[0] * len(df_scores.score),
close=df_scores.score,
high=df_scores.score,
low=df_scores.score,
hovertext=df_scores.text,
name="Сентимент новости",
),
row=4,
col=1,
)
idx1, idx2, idx3 = st.columns((0.2, 0.4, 0.2))
fig.update_layout(height=1000)
fig.update_xaxes(rangeslider_visible=False)
idx2.plotly_chart(fig, use_container_width=True, height=1000)
st.title("Зависимость изменения цены акции от сентимента новости")
m1, minter, m2 = st.columns((0.2, 0.1, 0.3))
m21, m22 = m2.columns((1, 1))
# days_before = m21.selectbox("Период до новости", options=[1, 2, 3, 4, 5, 6, 7])
days_after = m22.selectbox("Период после новости", options=[1, 2, 3, 4, 5, 20], index=4)
df_scores["news_level"] = df_scores["score"].rolling(5).sum()
df_sentiment_news_level = df_rolling_mean.reset_index()
df_candles_and_news_back = df_candles_stocks.merge(
df_sentiment_news_level,
how="left",
left_on="begin",
right_on="date",
)
df_candles_and_news_back = df_candles_and_news_back[
df_candles_and_news_back["date"].notna()
].reset_index(drop=True)
df_sentiment_with_diffs = get_df_sentiment_with_diffs(
df_candles=df_candles_and_news_back[["close", "begin"]],
df_sentiment=df_candles_and_news_back[["score", "date"]],
# days_before=days_before,
days_after=days_after,
)
column_to_analyze = "pct_change"
corr = df_sentiment_with_diffs.corr(numeric_only=True).loc["score", "pct_change"]
minter.text(f"Corr (Pearson): {corr}")
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=df_sentiment_with_diffs.score,
y=df_sentiment_with_diffs[column_to_analyze],
mode="markers",
marker={"size": 12},
),
)
fig.update_layout(
xaxis_title="Новостной фон",
yaxis_title="Percantage change",
height=600,
)
fig.update_xaxes(title_font=dict(size=30))
fig.update_yaxes(title_font=dict(size=30))
m2.plotly_chart(fig, use_container_width=True, height=600)
with st.expander("Новости"):
for row in df_scores.iloc[::-1].iterrows():
s1, s2, s3 = st.columns((0.1, 0.1, 0.8))
s1.text(row[1]["date"])
s2.metric("Score by Gigachat", value=row[1]["score"])
s3.text(row[1]["text"].replace("\n\n", "\n"))