forked from matthewberger/neurcomp
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnet_coder.py
241 lines (200 loc) · 8.24 KB
/
net_coder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import sys
import argparse
import os
import numpy as np
import time
import json
import re
import math
import struct
from sklearn.cluster import KMeans
import torch as th
import torch.nn as nn
import torch.backends.cudnn as cudnn
from siren import FieldNet
def get_weight_mats(net):
weight_mats = [(name,parameters.data) for name, parameters in net.named_parameters() if re.match(r'.*.weight', name, re.I)]
return [mat[1].cpu() for mat in weight_mats]
#
def get_bias_vecs(net):
bias_vecs = [(name,parameters.data) for name, parameters in net.named_parameters() if re.match(r'.*.bias', name, re.I)]
return [bias[1].cpu() for bias in bias_vecs]
#
def kmeans_quantization(w,q):
weight_feat = w.view(-1).unsqueeze(1).numpy()
kmeans = KMeans(n_clusters=q,n_init=4).fit(weight_feat)
return kmeans.labels_.tolist(),kmeans.cluster_centers_.reshape(q).tolist()
#
def ints_to_bits_to_bytes(all_ints,n_bits):
f_str = '#0'+str(n_bits+2)+'b'
bit_string = ''.join([format(v, f_str)[2:] for v in all_ints])
n_bytes = len(bit_string)//8
the_leftover = len(bit_string)%8>0
if the_leftover:
n_bytes+=1
the_bytes = bytearray()
for b in range(n_bytes):
bin_val = bit_string[8*b:] if b==(n_bytes-1) else bit_string[8*b:8*b+8]
the_bytes.append(int(bin_val,2))
#
return the_bytes,the_leftover
#
class SimpleMap(dict):
def __init__(self):
pass
def __getattr__(self, attr):
return self.get(attr)
def __setattr__(self, key, value):
self.__setitem__(key, value)
def __setitem__(self, key, value):
super(SimpleMap, self).__setitem__(key, value)
self.__dict__.update({key: value})
#
class SirenEncoder:
def __init__(self,net,config):
self.net = net
self.config = config
#
def encode(self,filename,n_bits,d_in=3):
n_clusters = int(math.pow(2,n_bits))
n_layers = self.config['n_layers']
layers = self.config['layers']
is_residual = 1 if self.config['is_residual'] else 0
d_out = 1
weight_mats = get_weight_mats(self.net)
bias_vecs = get_bias_vecs(self.net)
file = open(filename,'wb')
# header: number of layers
header = file.write(struct.pack('B', n_layers))
# header: d_in
header += file.write(struct.pack('B', d_in))
# header: d_out
header += file.write(struct.pack('B', d_out))
# header: is_residual
header += file.write(struct.pack('B', is_residual))
# header: layers
header += file.write(struct.pack(''.join(['I' for _ in range(len(layers))]), *layers))
# header: number of bits for clustering
header += file.write(struct.pack('B', n_bits))
# first layer: matrix and bias
w_pos,b_pos = weight_mats[0].view(-1).tolist(),bias_vecs[0].view(-1).tolist()
w_pos_format = ''.join(['f' for _ in range(len(w_pos))])
b_pos_format = ''.join(['f' for _ in range(len(b_pos))])
first_layer = file.write(struct.pack(w_pos_format, *w_pos))
first_layer += file.write(struct.pack(b_pos_format, *b_pos))
# middle layers: cluster, store clusters, then map matrix indices to indices
mid_bias,mid_weight=0,0
for weight_mat,bias_vec in zip(weight_mats[1:-1],bias_vecs[1:-1]):
labels,centers = kmeans_quantization(weight_mat,n_clusters)
# weights
w = centers
w_format = ''.join(['f' for _ in range(len(w))])
mid_weight += file.write(struct.pack(w_format, *w))
weight_bin,is_leftover = ints_to_bits_to_bytes(labels,n_bits)
mid_weight += file.write(weight_bin)
# encode non-pow-2 as 16-bit integer
if n_bits%8 != 0:
mid_weight += file.write(struct.pack('I', labels[-1]))
#
# bias
b = bias_vec.view(-1).tolist()
b_format = ''.join(['f' for _ in range(len(b))])
mid_bias += file.write(struct.pack(b_format, *b))
#
# last layer: matrix and bias
w_last,b_last = weight_mats[-1].view(-1).tolist(),bias_vecs[-1].view(-1).tolist()
w_last_format = ''.join(['f' for _ in range(len(w_last))])
b_last_format = ''.join(['f' for _ in range(len(b_last))])
last_layer = file.write(struct.pack(w_last_format, *w_last))
last_layer += file.write(struct.pack(b_last_format, *b_last))
file.flush()
file.close()
#
#
class SirenDecoder:
def __init__(self):
pass
#
def decode(self,filename):
#weight_mats = get_weight_mats(self.net)
#bias_vecs = get_bias_vecs(self.net)
file = open(filename,'rb')
# header: number of layers
self.n_layers = struct.unpack('B', file.read(1))[0]
# header: d_in
self.d_in = struct.unpack('B', file.read(1))[0]
# header: d_out
self.d_out = struct.unpack('B', file.read(1))[0]
# header: is_residual
self.is_residual = struct.unpack('B', file.read(1))[0]
# header: layers
self.layers = struct.unpack(''.join(['I' for _ in range(self.n_layers)]), file.read(4*(self.n_layers)))
# header: number of bits for clustering
self.n_bits = struct.unpack('B', file.read(1))[0]
self.n_clusters = int(math.pow(2,self.n_bits))
print('n bits?',self.n_bits,'n clusters?',self.n_clusters)
# create net from header
opt = SimpleMap()
self.d_in = 3
opt.d_in = self.d_in
opt.d_out = self.d_out
opt.L = 0
opt.w0 = 30
opt.n_layers = self.n_layers
opt.layers = self.layers
opt.is_residual = self.is_residual==1
net = FieldNet(opt)
# first layer: matrix and bias
w_pos_format = ''.join(['f' for _ in range(self.d_in*self.layers[0])])
b_pos_format = ''.join(['f' for _ in range(self.layers[0])])
w_pos = th.FloatTensor(struct.unpack(w_pos_format, file.read(4*self.d_in*self.layers[0])))
b_pos = th.FloatTensor(struct.unpack(b_pos_format, file.read(4*self.layers[0])))
all_ws = [w_pos]
all_bs = [b_pos]
# middle layers: cluster, store clusters, then map matrix indices to indices
total_n_layers = 2*(self.n_layers-1) if self.is_residual==1 else self.n_layers-1
for ldx in range(total_n_layers):
# weights
n_weights = self.layers[0]*self.layers[0]
weight_size = (n_weights*self.n_bits)//8
if (n_weights*self.n_bits)%8 != 0:
weight_size+=1
c_format = ''.join(['f' for _ in range(self.n_clusters)])
centers = th.FloatTensor(struct.unpack(c_format, file.read(4*self.n_clusters)))
inds = file.read(weight_size)
bits = ''.join(format(byte, '0'+str(8)+'b') for byte in inds)
w_inds = th.LongTensor([int(bits[self.n_bits*i:self.n_bits*i+self.n_bits],2) for i in range(n_weights)])
if self.n_bits%8 != 0:
next_bytes = file.read(4)
w_inds[-1] = struct.unpack('I', next_bytes)[0]
#
# bias
b_format = ''.join(['f' for _ in range(self.layers[0])])
bias = th.FloatTensor(struct.unpack(b_format, file.read(4*self.layers[0])))
w_quant = centers[w_inds]
all_ws.append(w_quant)
all_bs.append(bias)
#
# last layer: matrix and bias
w_last_format = ''.join(['f' for _ in range(self.d_out*self.layers[-1])])
b_last_format = ''.join(['f' for _ in range(self.d_out)])
w_last = th.FloatTensor(struct.unpack(w_last_format, file.read(4*self.d_out*self.layers[-1])))
b_last = th.FloatTensor(struct.unpack(b_last_format, file.read(4*self.layers[-1])))
all_ws.append(w_last)
all_bs.append(b_last)
wdx,bdx=0,0
for name, parameters in net.named_parameters():
if re.match(r'.*.weight', name, re.I):
w_shape = parameters.data.shape
parameters.data = all_ws[wdx].view(w_shape)
wdx+=1
#
if re.match(r'.*.bias', name, re.I):
b_shape = parameters.data.shape
parameters.data = all_bs[bdx].view(b_shape)
bdx+=1
#
#
return net
#
#