-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrainer.py
186 lines (153 loc) · 7.29 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright 2021 Condenser Author All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from contextlib import nullcontext
from typing import Dict, List, Tuple, Optional, Any, Union
import torch
import torch.distributed as dist
from torch import nn, Tensor
from torch.cuda.amp import autocast
from transformers.trainer import Trainer
try:
from grad_cache import GradCache
_grad_cache_available = True
except ModuleNotFoundError:
_grad_cache_available = False
import logging
logger = logging.getLogger(__name__)
class CondenserPreTrainer(Trainer):
def _save(self, output_dir: Optional[str] = None):
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info("Saving model checkpoint to %s", output_dir)
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
if not hasattr(self.model, 'save_pretrained'):
raise NotImplementedError(
f'MODEL {self.model.__class__.__name__} '
f'does not support save_pretrained interface')
else:
self.model.save_pretrained(output_dir)
if self.tokenizer is not None and self.is_world_process_zero():
self.tokenizer.save_pretrained(output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
def _remove_unused_columns(self, dataset, description: Optional[str] = None):
# we are not going to do this in this
# as collator will be generating new columns
pass
def create_optimizer_and_scheduler(self, num_training_steps: int):
if self.args.warmup_ratio > 0:
self.args.warmup_steps = num_training_steps * self.args.warmup_ratio
super().create_optimizer_and_scheduler(num_training_steps)
def compute_loss(self, model, inputs):
labels = inputs.pop('labels')
return model(inputs, labels)
def prediction_step(
self,
model: nn.Module,
inputs: Dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
inputs = self._prepare_inputs(inputs)
labels = inputs.pop('labels')
if ignore_keys is None:
if hasattr(self.model, "config"):
ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
else:
ignore_keys = []
with torch.no_grad():
if self.args.fp16:
with autocast():
outputs = model(inputs, labels)
else:
outputs = model(inputs, labels)
loss = outputs
return (loss, None, None)
class CoCondenserPretrainer(CondenserPreTrainer):
def __init__(self, *args, **kwargs):
logger.info('Initializing Gradient Cache Trainer')
super(CondenserPreTrainer, self).__init__(*args, **kwargs)
if self.args.cache_chunk_size != -1:
if not _grad_cache_available:
raise ValueError(
'Grad Cache package not available. You can obtain it from https://github.com/luyug/GradCache.')
self.gc = GradCache(
models=[self.model.lm],
chunk_sizes=self.args.cache_chunk_size,
loss_fn=self.model.compute_contrastive_loss,
get_rep_fn=lambda x: x.hidden_states[-1][:, 0],
fp16=self.args.fp16,
scaler=self.scaler
)
def _gather_tensor(self, t: Tensor):
all_tensors = [torch.empty_like(t) for _ in range(dist.get_world_size())]
dist.all_gather(all_tensors, t)
all_tensors[self.args.local_rank] = t
return all_tensors
def gather_tensors(self, *tt: Tensor):
tt = [torch.cat(self._gather_tensor(t)) for t in tt]
return tt
def compute_loss(self, model, inputs, grad_cache=None, chunk_offset=None):
labels = inputs.pop('labels')
return model(inputs, labels, grad_cache=grad_cache, chunk_offset=chunk_offset)
def split_tensor_dict(self, td: Dict[str, Tensor]):
keys = list(td.keys())
chunked_tensors = [td[k].split(self.args.cache_chunk_size) for k in keys]
return [dict(zip(keys, tt)) for tt in zip(*chunked_tensors)]
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
if self.args.cache_chunk_size == -1:
return super(CoCondenserPretrainer, self).training_step(model, inputs)
model.train()
inputs = self._prepare_inputs(inputs)
labels = inputs.pop('labels')
# Construct the gradient cache
chunked_inputs = self.split_tensor_dict(inputs)
for c in chunked_inputs:
c['output_hidden_states'] = True
cls_hiddens, rnd_states = self.gc.forward_no_grad(self.model.lm, chunked_inputs)
if self.args.local_rank > -1:
cls_hiddens = self.gather_tensors(cls_hiddens.contiguous())[0]
grad_cache, total_loss = self.gc.build_cache(cls_hiddens)
grad_cache = grad_cache[0]
if self.args.local_rank > -1:
total_loss = total_loss / dist.get_world_size()
inputs['labels'] = labels
chunked_inputs = self.split_tensor_dict(inputs)
# Compute the full loss with cached gradients
for local_chunk_id, chunk in enumerate(chunked_inputs):
device_offset = max(0, self.args.local_rank) * self.args.per_device_train_batch_size * 2
local_offset = local_chunk_id * self.args.cache_chunk_size
chunk_offset = device_offset + local_offset
with rnd_states[local_chunk_id]:
if self.use_amp:
with autocast():
lm_loss, surrogate = self.compute_loss(model, chunk, grad_cache, chunk_offset)
else:
lm_loss, surrogate = self.compute_loss(model, chunk, grad_cache, chunk_offset)
if self.args.gradient_accumulation_steps > 1:
raise ValueError
ddp_no_sync = self.args.local_rank > -1 and (local_chunk_id + 1 < len(chunked_inputs))
with model.no_sync() if ddp_no_sync else nullcontext():
if self.use_amp:
(self.scaler.scale(lm_loss) + surrogate).backward()
elif self.use_apex:
raise ValueError
elif self.deepspeed:
raise ValueError
else:
(lm_loss + surrogate).backward()
total_loss += lm_loss
return total_loss.detach()