forked from Lightning-AI/lit-llama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_adapter.py
200 lines (152 loc) · 6.44 KB
/
finetune_adapter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""
Instruction-tuning with LLaMA-Adapter on the Alpaca dataset following the paper
LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention
https://arxiv.org/abs/2303.16199
"""
import os
import time
import lightning as L
import numpy as np
import torch
from generate import generate
from lit_llama.adapter import LLaMA, LLaMAConfig, mark_only_adapter_as_trainable, adapter_state_dict
from lit_llama.tokenizer import Tokenizer
from scripts.prepare_alpaca import generate_prompt
out_dir = "out/adapter/"
eval_interval = 40
save_interval = 200
eval_iters = 100
log_interval = 1
# Hyperparameters
learning_rate = 9e-3
batch_size = 64
micro_batch_size = 4
gradient_accumulation_steps = batch_size // micro_batch_size
epoch_size = 50000 # train dataset size
num_epochs = 100
max_iters = epoch_size * num_epochs // micro_batch_size # 5 epochs
weight_decay = 0.02
block_size = 256
warmup_steps = epoch_size * 2 // micro_batch_size # 2 epochs
def main():
fabric = L.Fabric(accelerator="cuda", devices=1)
fabric.launch()
fabric.seed_everything(1337 + fabric.global_rank)
if fabric.global_rank == 0:
os.makedirs(out_dir, exist_ok=True)
train_data, val_data = load_datasets()
config = LLaMAConfig()
config.block_size = block_size
checkpoint = torch.load("checkpoints/lit-llama/7B/state_dict.pth")
with fabric.device:
model = LLaMA(config)
# strict=False because missing keys due to adapter weights not containted in state dict
model.load_state_dict(checkpoint, strict=False)
mark_only_adapter_as_trainable(model)
num_params = sum([p.numel() for p in model.parameters() if p.requires_grad])
print(f"Number of trainable parameters: {num_params}")
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
model, optimizer = fabric.setup(model, optimizer)
train(fabric, model, optimizer, train_data, val_data)
def train(
fabric: L.Fabric,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
train_data: np.ndarray,
val_data: np.ndarray,
) -> None:
"""The training loop.
Loosely based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT.
"""
step_count = 0
for iter_num in range(max_iters):
if step_count <= warmup_steps:
# linear warmup
lr = learning_rate * step_count / warmup_steps
for param_group in optimizer.param_groups:
param_group['lr'] = lr
t0 = time.time()
input_ids, targets = get_batch(fabric, train_data)
logits = model(input_ids)
loss = loss_fn(logits, targets)
with fabric.no_backward_sync(model, enabled=((iter_num + 1) % gradient_accumulation_steps != 0)):
fabric.backward(loss / gradient_accumulation_steps)
# fabric.clip_gradients(model, optimizer, clip_val=1.0)
if (iter_num + 1) % gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
step_count += 1
if step_count % eval_interval == 0:
val_loss = validate(fabric, model, val_data)
fabric.print(f"step {iter_num}: val loss {val_loss:.4f}")
fabric.barrier()
if step_count % save_interval == 0:
print(f"Saving adapter weights to {out_dir}")
# only save the adapter weights for smaller checkpoint files
checkpoint = adapter_state_dict(model)
# TODO: Provide a function/script to merge the adapter weights with pretrained weights
if fabric.is_global_zero:
torch.save(checkpoint, os.path.join(out_dir, f"iter-{iter_num:06d}-ckpt.pt"))
fabric.barrier()
dt = time.time() - t0
if iter_num % log_interval == 0:
fabric.print(f"iter {iter_num}: loss {loss.item():.4f}, time: {dt*1000:.2f}ms")
def generate_response(model, instruction):
tokenizer = Tokenizer("checkpoints/lit-llama/tokenizer.model")
sample = {"instruction": instruction, "input": ""}
prompt = generate_prompt(sample)
encoded = tokenizer.encode(prompt, bos=True, eos=True)
encoded = encoded[None, :] # add batch dimension
encoded = encoded.to(model.device)
output = generate(
model,
idx=encoded,
max_seq_length=block_size,
max_new_tokens=100,
)
output = tokenizer.decode(output[0].cpu())
return output # output.split("### Response:")[1].strip()
@torch.no_grad()
def validate(fabric: L.Fabric, model: torch.nn.Module, val_data: np.ndarray) -> torch.Tensor:
fabric.print("Validating ...")
model.eval()
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
input_ids, targets = get_batch(fabric, val_data)
logits = model(input_ids)
loss = loss_fn(logits, targets)
losses[k] = loss.item()
out = losses.mean()
# produce an example:
instruction = "Recommend a movie for me to watch during the weekend and explain the reason."
output = generate_response(model, instruction)
fabric.print(instruction)
fabric.print(output)
model.train()
return out.item()
def loss_fn(logits, targets):
# shift the targets such that output n predicts token n+1
logits = logits[..., :-1, :].contiguous()
targets = targets[..., 1:].contiguous()
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return loss
def get_batch(fabric: L.Fabric, data: list):
ix = torch.randint(len(data), (micro_batch_size,))
input_ids = [data[i]["input_ids"].type(torch.int64) for i in ix]
labels = [data[i]["labels"].type(torch.int64) for i in ix]
max_len = max(len(s) for s in input_ids)
def pad_right(x, pad_id):
# pad right based on the longest sequence
n = max_len - len(x)
return torch.cat((x, torch.full((n,), pad_id, dtype=x.dtype)))
x = torch.stack([pad_right(x, pad_id=0) for x in input_ids])
y = torch.stack([pad_right(x, pad_id=-1) for x in labels])
x, y = fabric.to_device((x.pin_memory(), y.pin_memory()))
return x, y
def load_datasets(data_dir: str = "data/alpaca"):
train_data = torch.load(os.path.join(data_dir, "train.pt"))
val_data = torch.load(os.path.join(data_dir, "test.pt"))
return train_data, val_data
if __name__ == "__main__":
torch.set_float32_matmul_precision("high")
main()