-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsota_utilities.py
203 lines (146 loc) · 5.29 KB
/
sota_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""
Useful functions to implement State-Of-The-Art (sota) methods.
"""
# to use cleanlab
from sklearn.linear_model import LogisticRegression
from cleanlab.classification import CleanLearning
import numpy as np
import cvxpy as cvx
import time
def clean_labels(data, noisy_labels):
'''
Function to clean the labels using cleanlab.
Parameters
----------
data : `array`-like of shape (`number_training_size` * `number_features`)
matrix representing the features X
noisy_labels : `array` of shape (`number_training_size` * 1)
vector representing the noisy (observed) labels to be cleansed
true_labels : `array` of shape (`number_training_size` * 1)
vector representing the true (maybe unknown) labels
default = None
Returns
-------
cl : CleanLearning model with all the info regarding the cleaning process
cleansed_labels: `array` of shape (`number_training_size` * 1)
vector representing the cleansed labels
'''
cl = CleanLearning(clf=LogisticRegression(max_iter=300))
label_issues = cl.find_label_issues(X=data, labels=noisy_labels)
number_found_issues = np.sum(np.array(label_issues['is_label_issue']))
cl.number_found_issues = number_found_issues
cleansed_labels = np.array(label_issues['predicted_label'])
print(f'Cleanlab found {number_found_issues} potential labels errors')
return cl, cleansed_labels
def natarajan_estimation(mdl, x, y):
'''
Parameters
----------
mdl: model of natarajan (like a constructor)
x : data already modified with feature mapping
y : labels
Returns
-------
mdl : with the estimator tau_
'''
if mdl.n_classes != 2:
raise ValueError('This method is implemented only for 2 classes: sorry!')
n, d = x.shape
tinv = np.linalg.inv(mdl.T)
m = np.zeros((n, d))
for i in range(n):
m[i, :] = (tinv[0, y[i]] - tinv[1, y[i]]) * x[i, :]
m = m / 2
tau_ = np.mean(m, axis=0)
mdl.tau_ = tau_
return mdl
def natarajan_fit(mdl, x):
'''
Fit the Natarajan model.
Computes the parameters required for the optimization
and then calls the `minimax_risk` function to solve the optimization.
Parameters
----------
mdl : model of natarajan (it's like a constructor)
x : `array`-like of shape (`n_samples`, `n_dimensions`)
Training instances used in
- Calculating the expectation estimates
that constrain the uncertainty set
for the minimax risk classification
- Solving the minimax risk optimization problem.
`n_samples` is the number of training samples and
`n_dimensions` is the number of features.
Y : `array`-like of shape (`n_samples`, 1), default = `None`
Labels corresponding to the training instances
used only to compute the expectation estimates.
Returns
-------
self :
Fitted estimator
'''
# Limit the number of training samples used in the optimization for large datasets
# Reduces the training time and use of memory
n_max = 5000
not_all_instances = True
n, d = x.shape
if not_all_instances and n_max < n:
n = n_max
x = x[:n]
lambda_val = 1 / n
muu = cvx.Variable((d, 1))
sum_log_sum_exp = 0
for i in range(n):
Mi = np.zeros(shape=(mdl.n_classes, d))
Mi[0, :] = x[i, :]/2
Mi[1, :] = - x[i, :]/2
sum_log_sum_exp = sum_log_sum_exp + cvx.log_sum_exp(Mi @ muu)
sum_log_sum_exp = sum_log_sum_exp / n
# log_sum = cvx.log(cvx.exp(x @ muu / 2) + cvx.exp(-x @ muu / 2))
# x_muu_1 = x @ muu / 2
# x_muu_2 = -x @ muu / 2
# exp_term = cvx.exp(cvx.hstack((x_muu_2, x_muu_1)))
# sum_exp = cvx.sum(exp_term, axis=0)
# log_sum_exp = cvx.log(sum_exp)
# sum_log_sum_exp = cvx.sum(log_sum_exp) / n
if mdl.regularization == "ridge":
reg_term = lambda_val * cvx.norm(muu, 2)**2
elif mdl.regularization == "lasso":
reg_term = lambda_val * cvx.norm(muu, 1)
objective = -mdl.tau_.T @ muu + sum_log_sum_exp + reg_term
problem = cvx.Problem(cvx.Minimize(objective))
problem.solve()
if problem.status in ["unbounded", "infeasible"]:
raise ValueError("The problem is ", problem.status)
else:
mdl.is_fitted_ = True
mdl.lambda_ = lambda_val
mdl.mu_ = muu.value
mdl.opt = problem.value
return mdl
def natarajan_predict(mdl, x):
nte = x.shape[0]
labels = np.sign(x @ mdl.mu_)
labels = np.reshape(labels, newshape=(nte,))
# encode the labels as 0, 1 again
labels[labels == 1] = 0
labels[labels == -1] = 1
mdl.y_pred = labels
return mdl
def my_natarajan(x_train, y_train, x_test, y_test, T, regularization='ridge'):
classes_ = np.unique(y_train)
n_classes = len(classes_)
mdl = type('', (), {})()
mdl.T = T
mdl.regularization = regularization
mdl.n_classes = n_classes
start_time = time.time()
mdl = natarajan_estimation(mdl, x_train, y_train)
mdl = natarajan_fit(mdl, x_train)
mdl = natarajan_predict(mdl, x_test)
end_time = time.time()
elapsed_time = end_time - start_time
error = np.average(mdl.y_pred != y_test)
mdl.time = elapsed_time
mdl.error = error
mdl.method = 'natarajan'
return mdl