-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmountaincar_deep_q_learning.py
240 lines (211 loc) · 8.08 KB
/
mountaincar_deep_q_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from collections import deque
from gym import wrappers
from keras.layers import Dense
from keras.models import load_model, Sequential
from keras.optimizers import Adam
import argparse
import gym
import numpy as np
import os
import pickle
import random
import time
class NeuralNetwork():
def __init__(self, obs_shape, action_size, learning_rate=0.001):
self.obs_shape = obs_shape
self.action_size = action_size
self.learning_rate = learning_rate
self.model = self.model_of_network()
def model_of_network(self):
model = Sequential()
model.add(Dense(units=24, input_shape=self.obs_shape, activation='relu'))
model.add(Dense(units=48, activation='relu'))
model.add(Dense(units=self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
class Agent():
def __init__(
self,
record,
env_name='MountainCar-v0',
gamma=0.999,
n_episodes=1000,
max_iterations=200,
epsilon_decay=0.05,
epsilon_min=0.01,
replay_memory_capacity=20000,
minibatch_size=32
):
self.env = gym.make(env_name)
if record:
self.env = wrappers.Monitor(self.env, os.path.join(os.getcwd(), 'videos', str(time.time())))
self.set_seeds(int(time.time()))
self.gamma = gamma
self.n_episodes = n_episodes
self.max_iterations = max_iterations
self.obs_shape = self.env.observation_space.shape
self.action_size = self.env.env.action_space.n
self.epsilon = 1.0
self.epsilon_decay = epsilon_decay
self.epsilon_min = epsilon_min
self.replay_memory_capacity = replay_memory_capacity
self.minibatch_size = minibatch_size
self.neural_network = NeuralNetwork(self.obs_shape, self.action_size)
self.n_success = 0
def set_seeds(self, seed):
"""Set random seeds using current time."""
self.env.seed(seed)
np.random.seed(seed)
random.seed(seed)
def train(self):
"""Train deep Q-learning agent."""
self.deep_q_learning()
def deep_q_learning(self):
"""
Deep Q-learning algorithm.
It learns the Q function without knowing the transition probabilities, through deep neural networks.
"""
self.replay_memory = deque(maxlen=self.replay_memory_capacity)
self.target_network = NeuralNetwork(self.obs_shape, self.action_size)
self.target_network.model.set_weights(self.neural_network.model.get_weights())
for episode in range(self.n_episodes):
if self.train_episode(episode):
break
if (episode + 1) % 50 == 0:
self.sample(1)
self.env.close()
def train_episode(self, episode):
"""Train one episode of deep Q-learning."""
obs = self.env.reset()
state = self.normalize_obs(obs)
total_reward = 0
for i in range(self.max_iterations):
action = self.take_action(state)
obs, reward, done, _ = self.env.step(action)
state_ = self.normalize_obs(obs)
self.replay_memory.append([state, action, reward, state_, done])
self.train_from_replay()
state = state_
total_reward += reward
if done:
break
self.report(i, episode, total_reward)
if self.success >= 30:
return True
self.update_epsilon()
self.sync_networks()
return False
def take_action(self, state):
"""
Take action based in epsilon-greedy algorithm.
With small probabily, take a random action;
otherwise, take the action from the neural network.
"""
if np.random.rand() < self.epsilon:
action = np.random.choice(self.action_size)
else:
output = self.compute_values(state)
action = np.argmax(output)
return action
def compute_values(self, state):
"""Compute values of a state."""
logits = self.neural_network.model.predict(state[None, :])
return logits[0, :]
def train_from_replay(self):
"""Train neural network from samples of replay memory."""
if len(self.replay_memory) < self.minibatch_size:
# If there isn't enough samples
return
minibatch = random.sample(self.replay_memory, self.minibatch_size)
states = []
states_ = []
for sample in minibatch:
state, action, reward, state_, done = sample
states.append(state)
states_.append(state_)
states = np.array(states)
states_ = np.array(states_)
targets = self.neural_network.model.predict(states)
targets_ = self.target_network.model.predict(states_)
for i, sample in enumerate(minibatch):
state, action, reward, state_, done = sample
if done:
targets[i][action] = reward
else:
targets[i][action] = reward + self.gamma * np.max(targets_[i])
self.neural_network.model.fit(
x=states,
y=targets,
verbose=0
)
def report(self, i, episode, total_reward):
"""Show status on console."""
result = 'FAIL'
if i < self.max_iterations - 1:
result = 'SUCCESS'
self.success += 1
else:
self.success = 0
print('Ep. {}: {}. Reward = {} and epsilon = {}.'.format(episode, result, total_reward, self.epsilon), end='\n\n')
def update_epsilon(self):
"""Update epsilon for epsilon-greedy algorithm."""
if self.epsilon > self.epsilon_min:
self.epsilon -= self.epsilon_decay
self.epsilon = np.max([self.epsilon, self.epsilon_min])
def sync_networks(self):
"""Sync original and target neural networks."""
self.target_network.model.set_weights(self.neural_network.model.get_weights())
def normalize_obs(self, obs):
"""Normalize observation."""
state = (obs - self.env.env.low) / (self.env.env.high - self.env.env.low)
return state
def sample_experience(self):
"""Sample experience from replay memory."""
return self.replay_memory[np.random.choice(len(self.replay_memory))]
def save_network(self, network_path):
"""Save the network in order to run it faster."""
os.makedirs(os.path.dirname(network_path), exist_ok=True)
self.neural_network.model.save(network_path)
print('Neural network saved.', end='\n\n')
def load_network(self, network_path):
"""Load the network in order to run it faster."""
self.neural_network.model = load_model(network_path)
print('Neural network loaded.', end='\n\n')
def sample(self, n):
"""Sample the network."""
print('Sampling network:')
for _ in range(n):
self.run_episode(render=True)
print()
def run_episode(self, render=False):
"""Run one episode for our network."""
obs = self.env.reset()
total_reward = 0
for _ in range(self.max_iterations):
state = self.normalize_obs(obs)
action = self.which_action(state)
obs, reward, done, _ = self.env.step(action)
total_reward += reward
if render:
self.env.render()
if done:
break
self.env.close()
print('Reward: ', total_reward)
def which_action(self, state):
"""Select which is the best action based on the network."""
return np.argmax(self.compute_values(state))
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--run', action='store_true')
parser.add_argument('--record', action='store_true')
args = parser.parse_args()
agent = Agent(args.record)
if args.run:
agent.load_network('data/deep_q_learning.h5')
agent.sample(5)
else:
agent.train()
agent.save_network('data/deep_q_learning.h5')
if __name__ == '__main__':
main()