-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDerivative.typ
50 lines (38 loc) · 1.46 KB
/
Derivative.typ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#import "template.typ": *
// Take a look at the file `template.typ` in the file panel
// to customize this template and discover how it works.
#show: project.with(
title: "Derivative",
authors: (
"Lucas Duchet-Annez",
),
date: "30 Octobre, 2023",
)
#set heading(numbering: "1.1.")
= The Derivative
<the-derivative>
== Definition
<definition>
The Derivative is the rate of change of function f(x) with respect to an
independent variable 'x'. It’s the slope of the tangent line at a point
x
$ frac(d f, d x) eq lim_(Delta x arrow.r 0) frac(f lr((x plus Delta x)) minus f lr((x)), Delta x) $
Example :
$ f lr((x)) eq x^2 $
$ frac(d f, d x) eq lim_(Delta x arrow.r 0) frac(lr((x plus Delta x))^2 plus minus x^2, Delta x) $
$ lim_(Delta x arrow.r 0) frac(x^2 plus 2 x Delta x plus Delta x^2 minus x^2, Delta x) $
$ lim_(Delta x arrow.r 0) frac(2 x Delta x, Delta x) plus frac(Delta x^2, Delta x) $
$ lim_(Delta x arrow.r 0) 2 x plus Delta x $
$ lim_(Delta x arrow.r 0) 2 x $
Power law: derivative of $f lr((x)) eq x^n$ \= $n x^(n minus 1)$
Chain law: Two function f(x),g(x)
$frac(d, d x) f lr((g lr((x)))) eq frac(d f, d x) lr((g lr((x)))) dot.basic frac(d g, d x) lr((x))$
$eq f prime lr((g lr((x)))) dot.basic g prime lr((x))$
Example:
$f lr((x)) eq s i n lr((x))$ \
$g lr((x)) eq x^3$ \
$f lr((g lr((x)))) eq s i n lr((x^3))$ \
$f prime lr((g lr((x)))) eq 3 c o s lr((x^3)) x^2$
== Links
<links>
- #link("https://tutorial.math.lamar.edu/getfile.aspx?file=B,44,N")[Identities]