-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnalyse_1_Cours_2.typ
189 lines (138 loc) · 4.71 KB
/
Analyse_1_Cours_2.typ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#import "@preview/bubble:0.1.0": *
#import "@preview/fletcher:0.4.3" as fletcher: diagram, node, edge
#import "@preview/cetz:0.2.2"
#import "@preview/cheq:0.1.0": checklist
#import "@preview/typpuccino:0.1.0": macchiato
#import "@preview/wordometer:0.1.1": *
#import "@preview/tablem:0.1.0": tablem
#show: bubble.with(
title: "Analyse 1 Cours 2",
subtitle: "13/09/2024",
author: "Lucas Duchet-Annez",
affiliation: "EPFL",
year: "2024/2025",
class: "Génie Mécanique",
logo: image("JOJO_magazine_Spring_2022_cover-min-modified.png"),
)
#set page(footer: context [
#set text(8pt)
#set align(center)
#text("page "+ counter(page).display())
]
)
#set heading(numbering: "1.1")
#show: checklist.with(fill: luma(95%), stroke: blue, radius: .2em)
= Nombre réels: $RR$
== Réels
=== Théorème 1
$pi$ est irrationnel.
Pour un triangle rectange de coté 1, 1, x
$ 1²+1² = x² $
$ x²=2 $
=== Théorème 2
$exists x >=0 | x² = 2 space x " est irrationnel."$
==== Preuve
Par l'absurde, supposons que $x in QQ arrow.double.l.r.long exists p in ZZ, q in ZZ^* "tq" x = p/q$
#linebreak()
On suppose que $p/q$ est irréductible
Alors $p² = 2q²$
Ainsi $2 divides p² arrow.l.r.double.long 2 divides p arrow.l.r.double.long exists k in N^* "tq" p = 2k$
$ (2k)² = 2q² arrow.double.long 2 divides q² arrow.double.long 2 divides q $
$p$ et $q$ sont divisibles par $2$ contradiction avec le présupposé. #linebreak()
$x in.not QQ$.
Notation : $x=sqrt(2)$
== Règles de calcul: $+, -, times, div$
=== Addition
+ $x + y = y + x$
+ $x + (y+z) = (x+y) +z$
+ $x+0=0+x=x$
+ $x + (-x) = 0$
=== Soustraction
$ x - y = x + (-y) $
=== Multiplication
+ $x times y = y times x$
+ $ x times ( y times z) = ( x times y) times z$
+ $ x times ( y + z) = x times y + x times z$
+ $ x times 1 = 1 times x = x$
+ $ x times x^(-1) = x^(-1) times x = 1, x in RR^*$
=== Division
$ x / y colon.eq x times y^(-1) $
== Ordre $<=, >=, <, >$
+ $ forall x,y in RR x <= y " ou/et " y <= x $
+ $ x <= w$
+ $ x <= y, y<= z, x<= z$
+ $ x <= y, x+y <= y+z forall z in RR$
+ $ 0 <= x, 0<=y arrow.long.double 0 <= x times y$
== Intervalles
$ [a,b] colon.eq {x in RR: a<= x <= b} $
$ ]a,b[ colon.eq {x in RR: a< x < b} $
$ [a,b[ colon.eq {x in RR: a<= x < b} $
$ ]a,b] colon.eq {x in RR: a< x <= b} $
$ [a, +inf[ colon.eq {x in RR: x>= a} $
$ ]a, +inf[ colon.eq {x in RR: x> a} $
$ ]-inf, b] colon.eq {x in RR: x <= b} $
$ ]-inf, b[ colon.eq {x in RR: x < b} $
== Valeur Absolue
$ |x| colon.eq cases(
x "si" x>0,
0 "si" x=0,
-x "si" x<0,
) $
+ $ abs(-x) = abs(x) >= 0$
+ $ abs(x) = 0 arrow.double.l.r.long x = 0$
+ $-abs(x) <= x <= abs(x)$
+ $a >= 0 arrow abs(x) <= a arrow.double.l.r.long -a <= x <= a$
+ $abs(x times y) = abs(x) times abs(y)$
+ $forall y in RR^*, abs(x/y) = abs(x)/abs(y)$
+ $forall x in RR^*$
$ x/abs(x) = cases(
+1 "si" x>0,
-1 "si" x<0,
) $
=== Propriété Inégalité triangulaire
$ abs(x + y) <= abs(x) + abs(y) $
== Distance
$ d(x,y) colon.eq abs(x-y) $
+ $forall x,y in RR space d(x,y) >= 0, d(x,y) = 0 arrow.l.r.double.long x=y$
+ $d(x,y) = d(y,x)$
+ $d(x,y) <= d(x,z) + d(z,y)$
=== Equivalence
$ d(x,a) <= epsilon arrow.l.r.double.long abs(x-a) <= epsilon $
$ arrow.l.r.double.long a-epsilon <= x <= a+epsilon $
$ arrow.l.r.double.long x in [a - epsilon, a + epsilon] $
== Supremum et Infimum
=== Minimum et Maximum
$ max(A) = x^* arrow.l.r.double.long forall x in A x <= x^* $
$ min(A) = x_* arrow.l.r.double.long forall x in A x >= x_* $
==== Ex
+ $A = NN arrow.double min(A) = 0, "pas de " max(A)$
+ $A = {1/n, n in NN} arrow.double max(A) = 1, "pas de " min(A)$
+ $A = [0, 1[ arrow.double min(A) = 0, "pas de " max(A)$
=== Majorants et Minorants
Soit $A subset RR$
+ A est majoré $arrow.l.r.double.long exists M in RR "tq" forall x in A, x <= M$
+ A est minoré $arrow.l.r.double.long exists m in RR "tq" forall x in A, x >= m$
+ A est borné $arrow.l.r.double.long$ A est majoré et minoré
==== Ex
+ $A = [0, 1[ "est borné"$
+ $A = NN "est minoré et non majoré", forall M in RR, exists n in N "tq" n > M$
=== Supremum, Infimum
$A subset RR != emptyset$
$s in RR$ est supremum de $A$ si
+ $s$ majore $A$
+ $s <= s' , forall s' in M a j(A)$
$arrow.l.r.double.long s = sup A$
$s in RR$ est infimum de $A$ si
+ $s$ minore $A$
+ $s >= s' , forall s' in M i n(A)$
$arrow.l.r.double.long s = inf A$
==== Remarque
Si $A$ possède un $max(A)$
$ sup(A) = max(A) $
Si $A$ possède un $min(A)$
$ inf(A) = min(A) $
==== Ex
+ $A = {1/n, n in NN^*} arrow.l.r.double.long max(A) = sup(A) = 1, exists.not min(A), inf(A) = 0$
- En effet $0$ minore $A$ $0 <= 1/n, forall n in NN^*$
- $0$ est le plus grand minorant $s'>0, exists n in NN^*, n > 1/s' arrow.l.r.double.long 1/n < s'$ Or $n in A, s'$ ne minore pas $A$
+ $A = [0,1[, inf(A) = min(A) = 0, sup(A) = 1$