-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathlangchain_sqlagent.py
90 lines (67 loc) · 2.4 KB
/
langchain_sqlagent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import datetime
import random
import openai
from faker import Faker
from langchain.agents import create_sql_agent
from langchain.agents.agent_toolkits import SQLDatabaseToolkit
from langchain.llms import OpenAI
from langchain.sql_database import SQLDatabase
from sqlalchemy import Column, DateTime, Integer, String, create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
from log10.load import log10
log10(openai)
# Set up a dummy database
fake = Faker()
# Create a SQLite database and connect to it
engine = create_engine("sqlite:///users.db", echo=True)
Base = declarative_base()
# Define the User class with standard fields and the created_at field
class User(Base):
__tablename__ = "users"
id = Column(Integer, primary_key=True)
username = Column(String, unique=True, nullable=False)
email = Column(String, unique=True, nullable=False)
first_name = Column(String, nullable=False)
last_name = Column(String, nullable=False)
age = Column(Integer, nullable=False)
created_at = Column(DateTime, default=datetime.datetime.utcnow)
def __repr__(self):
return f"<User(id={self.id}, username='{self.username}', email='{self.email}', first_name='{self.first_name}', last_name='{self.last_name}', age={self.age}, created_at={self.created_at})>"
# Helper function to generate a random user using Faker
def generate_random_user():
username = fake.user_name()
email = fake.email()
first_name = fake.first_name()
last_name = fake.last_name()
age = random.randint(18, 100)
return User(
username=username,
email=email,
first_name=first_name,
last_name=last_name,
age=age,
)
# Create the 'users' table
Base.metadata.create_all(engine)
# Create a session factory and a session
Session = sessionmaker(bind=engine)
session = Session()
# Add some example users
for n_users in range(10):
user = generate_random_user()
session.add(user)
session.commit()
# Query the users and print the results
all_users = session.query(User).all()
print(all_users)
session.close()
# Setup Langchain SQL agent
db = SQLDatabase.from_uri("sqlite:///users.db")
toolkit = SQLDatabaseToolkit(db=db)
agent_executor = create_sql_agent(
llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo-instruct"),
toolkit=toolkit,
verbose=True,
)
print(agent_executor.run("Who is the least recent user?"))