-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcreate_inpaint_data_mini.py
471 lines (428 loc) · 19.1 KB
/
create_inpaint_data_mini.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
from __future__ import print_function
from __future__ import division
import os
import sys
import time
from PIL import Image
import datetime
import argparse
import os.path as osp
import numpy as np
import random
import cv2
from scipy.misc import imread
from skimage.feature import canny
from skimage.color import rgb2gray, gray2rgb
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
import torch.nn.functional as F
import torchvision.transforms.functional as Funljj
sys.path.append('./torchFewShot')
#from args_tiered import argument_parser
from args_xent import argument_parser
#from torchFewShot.models.net import Model
from torchFewShot.models.models_gnn import create_models
from torchFewShot.data_manager_imageori import DataManager
#from torchFewShot.data_manager import DataManager
from torchFewShot.losses import CrossEntropyLoss
from torchFewShot.optimizers import init_optimizer
import transforms as T
from torchFewShot.utils.iotools import save_checkpoint, check_isfile
from torchFewShot.utils.avgmeter import AverageMeter
from torchFewShot.utils.logger import Logger
from torchFewShot.utils.torchtools import one_hot, adjust_learning_rate
sys.path.append('/home/lijunjie/edge-connect-master')
from shutil import copyfile
from src.config import Config
from src.edge_connect_few_shot import EdgeConnect
#config = load_config(mode)
config_path = os.path.join('/home/lijunjie/edge-connect-master/checkpoints/places2_authormodel', 'config.yml')
config = Config(config_path)
config.TEST_FLIST = '/home/lijunjie/edge-connect-master/examples/test_result/'
config.TEST_MASK_FLIST = '/home/lijunjie/edge-connect-master/examples/places2/masks'
config.RESULTS = './checkpoints/EC_test'
config.MODE = 2
if config.MODE == 2:
config.MODEL = 3
config.INPUT_SIZE = 0
config.mask_id=2
#if args.input is not None:
#config.TEST_FLIST = args.input
#if args.mask is not None:
#config.TEST_MASK_FLIST = args.mask
#if args.edge is not None:
#config.TEST_EDGE_FLIST = args.edge
#if args.output is not None:
#config.RESULTS = args.output
#exit(0)
parser = argument_parser()
args = parser.parse_args()
#print(args.use_similarity)
#exit(0)
if args.use_similarity:
from torchFewShot.models.net_similary import Model
else:
from torchFewShot.models.net import Model_mltizhixin , Model_tradi
#print('enter ori net')
#exit(0)
only_test=False
def returnCAM(feature_conv, weight_softmax, class_idx,output_cam ):
# generate the class activation maps upsample to 256x256
size_upsample = (84, 84)
nc, h, w = feature_conv.shape
#output_cam = []
#print(class_idx)
#exit(0)
#print(class_idx, nc, h, w,weight_softmax[class_idx[0]].shape)
#print(feature_conv.shape)
#print(class_idx)
#exit(0)
for idx in class_idx[0]:
#idx=int(idx)
#print(idx)
#exit(0)
#print( weight_softmax[idx].shape,feature_conv.reshape((nc, h*w)).shape)
#exit(0)
cam = weight_softmax[idx].dot(feature_conv.reshape((nc, h*w)))
cam = cam.reshape(h, w)
cam = cam - np.min(cam)
cam_img = cam / np.max(cam)
#cam_img = np.uint8((255 * cam_img)>200)*255
cam_img = np.uint8(255 * cam_img)
cam_img_resize=cv2.resize(cam_img, size_upsample)
cam_img_resize = np.uint8((cam_img_resize)>200)*255
#cv2.imwrite('./mask.jpg',cam_img*255)
#exit(0)
#print(cam_img.sum())
#exit(0)
#cam_img = np.uint8(255 * cam_img)
mask_tensor=Funljj.to_tensor(Image.fromarray(cam_img_resize)).float()
#print(mask_tensor.sum())
#exit(0)
output_cam.append(mask_tensor)
return output_cam
def main():
torch.manual_seed(args.seed)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
use_gpu = torch.cuda.is_available()
config.DEVICE = torch.device("cuda")
torch.backends.cudnn.benchmark = True
#torch.manual_seed(config.SEED)
#torch.cuda.manual_seed_all(config.SEED)
np.random.seed(args.seed)
random.seed(args.seed)
sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
print("==========\nArgs:{}\n==========".format(args))
if use_gpu:
print("Currently using GPU {}".format(args.gpu_devices))
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU (GPU is highly recommended)")
print('Initializing image data manager')
dm = DataManager(args, use_gpu)
trainloader, testloader = dm.return_dataloaders()
model_edge = EdgeConnect(config)
model_edge.load()
print('\nstart testing...\n')
#model_edge.test()
#print(args.scale_cls,args.num_classes)
#exit(0)
#GNN_model=create_models(args,512)
#print(args.use_similarity)
#exit(0)
if args.use_similarity:
GNN_model=create_models(args,512)
model = Model(args,GNN_model,scale_cls=args.scale_cls, num_classes=args.num_classes)
else:
model = Model_mltizhixin(scale_cls=args.scale_cls, num_classes=args.num_classes)
model_tradclass = Model_tradi(scale_cls=args.scale_cls, num_classes=args.num_classes)
params_tradclass = torch.load('../fewshot-CAN-master/result/%s/CAM/1-shot-seed112_classic_classifier_avg_nouse_CAN/%s' % (args.dataset, 'best_model.pth.tar'))
model_tradclass.load_state_dict(params_tradclass['state_dict'])
#params = torch.load('result/%s/CAM/1-shot-seed112_inpaint_use_CAM/%s' % (args.dataset, 'checkpoint_inpaint67.pth.tar'))
#model.load_state_dict(params['state_dict'])
#print('enter model_tradclass')
#exit(0)
if False:
params = torch.load('result/%s/CAM/1-shot-seed112/%s' % (args.dataset, 'best_model.pth.tar'))
params_tradclass = torch.load('result/%s/CAM/1-shot-seed112_classic_classifier_global_avg/%s' % (args.dataset, 'checkpoint_inpaint67.pth.tar'))
print(type(params))
#exit(0)
#for key in params.keys():
#print(type(key))
#exit(0)
#model.load_state_dict(params['state_dict'])
model_tradclass.load_state_dict(params_tradclass['state_dict'])
#exit(0)
#for ind,i in model.state_dict().items():
#print (ind,i.shape)
#exit(0)
params = list(model_tradclass.parameters())
#fc_params=params[-2]
weight_softmax = np.squeeze(params[-2].data.numpy())
#print(weight_softmax.shape,type(params[-2]),params[-2].shape,params[-2].data.shape)
#exit(0)
criterion = CrossEntropyLoss()
optimizer = init_optimizer(args.optim, model.parameters(), args.lr, args.weight_decay)
#optimizer_tradclass = init_optimizer(args.optim, model_tradclass.parameters(), args.lr, args.weight_decay)
#model_tradclass
if use_gpu:
model = model.cuda()
model_tradclass = model_tradclass.cuda()
start_time = time.time()
train_time = 0
best_acc = -np.inf
best_epoch = 0
print("==> Start training")
for epoch in range(args.max_epoch):
if not args.Classic:
learning_rate = adjust_learning_rate(optimizer, epoch, args.LUT_lr)
else:
optimizer_tradclass = init_optimizer(args.optim, model_tradclass.parameters(), args.lr, args.weight_decay)
learning_rate = adjust_learning_rate(optimizer_tradclass, epoch, args.LUT_lr)
#print('enter optimizer_tradclass')
#exit(0)
start_train_time = time.time()
#exit(0)
#print(not True)
#exit(0)
if not only_test:
#print(';;;;;;;;;;;')
#exit(0)
if not args.Classic:
print('enter train code')
train(epoch,model_edge, model, model_tradclass,weight_softmax, criterion, optimizer, trainloader, learning_rate, use_gpu)
#print('oooo')
else:
acc=train(epoch,model_edge, model_tradclass, criterion, optimizer_tradclass, trainloader, learning_rate, use_gpu)
train_time += round(time.time() - start_train_time)
if epoch == 0 or epoch > (args.stepsize[0]-1) or (epoch + 1) % 10 == 0:
print('enter test code')
#exit(0)
if not args.Classic:
#acc = test(model_edge, model, model_tradclass,weight_softmax, testloader, use_gpu)
acc = test_ori(model, testloader, use_gpu)
is_best = acc > best_acc
#else:
#print(acc)
#exit(0)
if is_best:
best_acc = acc
best_epoch = epoch + 1
if not only_test:
if not args.Classic:
save_checkpoint({
'state_dict': model.state_dict(),
'acc': acc,
'epoch': epoch,
}, is_best, osp.join(args.save_dir, 'checkpoint_inpaint' + str(epoch + 1) + '.pth.tar'))
if args.Classic:
save_checkpoint({
'state_dict': model_tradclass.state_dict(),
'acc': acc,
'epoch': epoch,
}, is_best, osp.join(args.save_dir, 'checkpoint_classic' + str(epoch + 1) + '.pth.tar'))
print("==> Test 5-way Best accuracy {:.2%}, achieved at epoch {}".format(best_acc, best_epoch))
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
train_time = str(datetime.timedelta(seconds=train_time))
print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
print("==========\nArgs:{}\n==========".format(args))
from skimage.feature import canny
from skimage.color import rgb2gray, gray2rgb
def load_edge( img, mask):
sigma = 2
index=1
# in test mode images are masked (with masked regions),
# using 'mask' parameter prevents canny to detect edges for the masked regions
mask = None if False else (1 - mask / 255).astype(np.bool)
#mask =(1 - mask / 255).astype(np.bool)
# canny
if True:
# no edge
if sigma == -1:
return np.zeros(img.shape).astype(np.float)
# random sigma
if sigma == 0:
sigma = random.randint(1, 4)
return canny(img, sigma=sigma, mask=mask).astype(np.float)
# external
else:
imgh, imgw = img.shape[0:2]
edge = imread(self.edge_data[index])
edge = self.resize(edge, imgh, imgw)
# non-max suppression
if self.nms == 1:
edge = edge * canny(img, sigma=sigma, mask=mask)
return edge
def read_image(img_path):
"""Keep reading image until succeed.
This can avoid IOError incurred by heavy IO process."""
got_img = False
if not osp.exists(img_path):
raise IOError("{} does not exist".format(img_path))
while not got_img:
try:
img = Image.open(img_path).convert('RGB')
got_img = True
except IOError:
print("IOError incurred when reading '{}'. Will redo. Don't worry. Just chill.".format(img_path))
pass
return img
transform_test = T.Compose([
T.Resize((args.height, args.width), interpolation=3),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
def train(epoch,model_edge, model, model_tradclass,weight_softmax, criterion, optimizer, trainloader, learning_rate, use_gpu):
if not os.path.isdir("/data4/lijunjie/mini-imagenet-tools/processed_images_84/train_1"):
os.mkdir("/data4/lijunjie/mini-imagenet-tools/processed_images_84/train_1")
os.mkdir("/data4/lijunjie/mini-imagenet-tools/processed_images_84/train_2")
os.mkdir("/data4/lijunjie/mini-imagenet-tools/processed_images_84/train_3")
os.mkdir("/data4/lijunjie/mini-imagenet-tools/processed_images_84/train_4")
os.mkdir("/data4/lijunjie/mini-imagenet-tools/processed_images_84/train_5")
os.mkdir("/data4/lijunjie/mini-imagenet-tools/processed_images_84/train_6")
os.mkdir("/data4/lijunjie/mini-imagenet-tools/processed_images_84/train_7")
os.mkdir("/data4/lijunjie/mini-imagenet-tools/processed_images_84/train_8")
losses = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
std=np.expand_dims(np.array([0.229, 0.224, 0.225]),axis=1)
std=np.expand_dims(std,axis=2)
mean=np.expand_dims(np.array([0.485, 0.456, 0.406]),axis=1)
mean=np.expand_dims(mean,axis=2)
model.eval()
#model_edge.eval()
model_tradclass.eval()
end = time.time()
#print('llllllllllllll','located in train_with_inpaint_final.py at 264')
#exit(0)
for root, dirs, _ in os.walk('/data4/lijunjie/mini-imagenet-tools/processed_images_84/train'):
#for f in files:
#print(os.path.join(root, f))
for d in dirs:
path=os.path.join(root, d)
path_1=path.replace('train','train_1')
path_2=path.replace('train','train_2')
path_3=path.replace('train','train_3')
path_4=path.replace('train','train_4')
path_5=path.replace('train','train_5')
path_6=path.replace('train','train_6')
path_7=path.replace('train','train_7')
path_8=path.replace('train','train_8')
if not os.path.isdir(path_1):
os.mkdir(path_1)
os.mkdir(path_2)
os.mkdir(path_3)
os.mkdir(path_4)
os.mkdir(path_5)
os.mkdir(path_6)
os.mkdir(path_7)
os.mkdir(path_8)
files = os.listdir(path)
#images=[]
#imgs_gray=[]
#Xt_img_ori=[]
Paths=[]
Paths.append(path_1)
Paths.append(path_2)
Paths.append(path_3)
Paths.append(path_4)
Paths.append(path_5)
Paths.append(path_6)
Paths.append(path_7)
Paths.append(path_8)
for file in files:
images=[]
imgs_gray=[]
Xt_img_ori=[]
img_ori = read_image(os.path.join(path, file))
#print(file)
#exit(0)
masked_img=np.array(img_ori)#*(1-mask_3)+mask_3*255
masked_img=Image.fromarray(masked_img)
masked_img_tensor=Funljj.to_tensor(masked_img).float()
Xt_img_ori.append(masked_img_tensor)
img = transform_test(img_ori)
img_gray = rgb2gray(np.array(img_ori))
img_gray=Image.fromarray(img_gray)
img_gray_tensor=Funljj.to_tensor(img_gray).float()
imgs_gray.append(img_gray_tensor)
images.append(img)
images = torch.stack(images, dim=0)
imgs_gray = torch.stack(imgs_gray, dim=0)
Xt_img_ori = torch.stack(Xt_img_ori, dim=0)
if use_gpu:
images_train = images.cuda()
imgs_gray = imgs_gray.cuda()
Xt_img_ori = Xt_img_ori.cuda()
with torch.no_grad():
ytest,feature= model_tradclass(images_train.reshape(1,1,3,84,84), images_train.reshape(1,1,3,84,84),images_train.reshape(1,1,3,84,84), images_train.reshape(1,1,3,84,84))
feature_cpu=feature.detach().cpu().numpy()
probs, idx = ytest.detach().sort(1, True)
probs = probs.cpu().numpy()
idx = idx.cpu().numpy()
#print(pids)
#print(idx[:,0,0,0])
#print(idx.shape)
#exit(0)
#print(feature.shape)
#exit(0)
masks=[]
edges=[]
#output_cam=[]
for i in range(feature.shape[0]):
CAMs=returnCAM(feature_cpu[i], weight_softmax, [idx[i,:8,0,0]],masks)
#for j in range(4):
#print(CAMs[j].shape,CAMs[j].max(),CAMs[j].min(),CAMs[j].sum())
#exit(0)
masks=CAMs
#print(len(masks),masks[0].shape)
masks_tensor = torch.stack(masks, dim=0)
Xt_masks = masks_tensor.reshape(1,1,8,1,84,84)#[:,:,0]
Xt_img_ori_repeat=Xt_img_ori.reshape(1,1,1,3,84,84)
Xt_img_ori_repeat = Xt_img_ori_repeat.repeat(1,1,8,1,1,1)
Xt_img_gray_repeat=imgs_gray.reshape(1,1,1,1,84,84)
Xt_img_gray_repeat = Xt_img_gray_repeat.repeat(1,1,7,1,1,1)
#print(Xt_img_ori.shape,Xt_masks.shape)
#exit(0)
mask_numpy=np.uint8(Xt_masks.numpy()*255)
print(mask_numpy.shape)
#exit(0)
Xt_img_gray_numpy=np.uint8(imgs_gray.cpu().numpy()*255).reshape(1,1,1,84,84)
#print(Xt_img_gray_numpy.shape)
for i in range(1):
for j in range(1):
for k in range(7):
edge_PIL=Image.fromarray(load_edge(Xt_img_gray_numpy[i,j,0], mask_numpy[i,j,k,0]))
print(mask_numpy[i,j,k,0].sum()/255,'llll')
#exit(0)
edges.append(Funljj.to_tensor(edge_PIL).float())
edges = torch.stack(edges, dim=0)
edge_sh=edges#.reshape(4,5,1,84,84)
#print(edge_sh.shape,Xt_img_gray_repeat.shape,masks_tensor.shape)
#exit(0)
#exit(0)
#model_edge.test(Xt_img_ori,edge_sh,Xt_img_gray,Xt_masks)
with torch.no_grad():
inpaint_img=model_edge.test(Xt_img_ori_repeat.reshape(8,3,84,84),edge_sh,Xt_img_gray_repeat.reshape(8,1,84,84),masks_tensor)
inpaint_img_np=inpaint_img.detach().cpu().numpy()
Xt_img_ori_np=Xt_img_ori_repeat.detach().cpu().numpy()
#print(inpaint_img_np.shape)
#exit(0)
for id in range(8):
images_temp_train1=inpaint_img_np[id,:,:]
Xt_img_ori_repeat1=Xt_img_ori_np.reshape(8,3,84,84)[id,:,:]
print(Xt_img_ori_repeat1.shape)
#images_temp_train=images_temp_train1*std+mean
images_ori_train=images_temp_train1.transpose((1,2,0))[:,:,::-1]
Xt_img_ori_repeat1=Xt_img_ori_repeat1.transpose((1,2,0))[:,:,::-1]
images_ori_train=np.uint8(images_ori_train*255)
Xt_img_ori_repeat1=np.uint8(Xt_img_ori_repeat1*255)
cv2.imwrite(Paths[id]+'/'+file, images_ori_train)
#cv2.imwrite('./result/inpaint_img/'+str(i)+'_'+str(id)+'_ori.jpg', Xt_img_ori_repeat1)
if __name__ == '__main__':
main()