-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
103 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
import random | ||
import pickle | ||
import torch | ||
from torch.autograd import grad | ||
import torch.nn.functional as F | ||
from torchvision import datasets, transforms | ||
import preconditioned_stochastic_gradient_descent as psgd | ||
import utilities as U | ||
|
||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | ||
|
||
train_loader = torch.utils.data.DataLoader( | ||
datasets.MNIST('../data', train=True, download=True, | ||
transform=transforms.Compose([ | ||
transforms.ToTensor()])), | ||
batch_size=64, shuffle=True) | ||
test_loader = torch.utils.data.DataLoader( | ||
datasets.MNIST('../data', train=False, transform=transforms.Compose([ | ||
transforms.ToTensor()])), | ||
batch_size=64, shuffle=True) | ||
"""The same settings as extended_MNIST_experiment. | ||
The traditional MIL cost is difficult to optimize when the model is highly nonconvex""" | ||
"""Test error rates from a few runs: 8.9%, 5.4%, 8.4%""" | ||
W1 = torch.tensor(torch.randn(1*5*5+1, 64)/(1*5*5)**0.5, requires_grad=True, device=device) | ||
W2 = torch.tensor(torch.randn(64*5*5+1, 64)/(64*5*5)**0.5, requires_grad=True, device=device) | ||
W3 = torch.tensor(torch.randn(64*5*5+1, 64)/(64*5*5)**0.5, requires_grad=True, device=device) | ||
W4 = torch.tensor(torch.randn(64*5*5+1, 64)/(64*5*5)**0.5, requires_grad=True, device=device) | ||
W5 = torch.tensor(torch.randn(64*5*5+1, 64)/(64*5*5)**0.5, requires_grad=True, device=device) | ||
W6 = torch.tensor(torch.randn(64*5*5+1, 10+1)/(64*5*5)**0.5, requires_grad=True, device=device) | ||
def model(x): | ||
x = F.leaky_relu(F.conv2d(x, W1[:-1].view(64,1,5,5), bias=W1[-1], padding=2), negative_slope=0.1) | ||
x = F.leaky_relu(F.conv2d(x, W2[:-1].view(64,64,5,5), bias=W2[-1], padding=2), negative_slope=0.1) | ||
x = F.leaky_relu(F.conv2d(x, W3[:-1].view(64,64,5,5), bias=W3[-1], padding=2, stride=2), negative_slope=0.1) | ||
x = F.leaky_relu(F.conv2d(x, W4[:-1].view(64,64,5,5), bias=W4[-1], padding=1), negative_slope=0.1) | ||
x = F.leaky_relu(F.conv2d(x, W5[:-1].view(64,64,5,5), bias=W5[-1]), negative_slope=0.1) | ||
x = F.conv2d(x, W6[:-1].view(11,64,5,5), bias=W6[-1]) | ||
#print(x.shape) | ||
return x | ||
|
||
def train_loss(images, labels): | ||
y = model(images) | ||
y = y - torch.max(y)#prevent overflow | ||
y = torch.exp(y) | ||
y = torch.log(y/torch.sum(y)) | ||
loss = 0.0 | ||
for i in range(y.shape[0]): | ||
for l in labels[i]: | ||
loss -= torch.max(y[i,l]) | ||
return loss/y.shape[0] | ||
|
||
def test_loss( ): | ||
num_errs = 0 | ||
with torch.no_grad(): | ||
for data, target in test_loader: | ||
y = model(data.to(device)) | ||
y, _ = torch.max(y, dim=3) | ||
y, _ = torch.max(y, dim=2) | ||
_, pred = torch.max(y, dim=1) | ||
num_errs += torch.sum(pred!=target.to(device)) | ||
|
||
return num_errs.item()/len(test_loader.dataset) | ||
|
||
# train and test our model; use PSGD-Newton for optimization (virtually tuning free) | ||
Ws = [W1,W2,W3,W4,W5,W6] | ||
Qs = [[torch.eye(W.shape[0], device=device), torch.eye(W.shape[1], device=device)] for W in Ws] | ||
step_size = 0.02 | ||
num_epochs = 20 | ||
grad_norm_clip_thr = 0.1*sum(W.shape[0]*W.shape[1] for W in Ws)**0.5 | ||
TrainLoss, TestLoss, BestTestLoss = [], [], 1e30 | ||
for epoch in range(num_epochs): | ||
for batch_idx, (data, target) in enumerate(train_loader): | ||
nestH, nestW = random.randint(56, 84), random.randint(56, 84) | ||
new_data = torch.zeros(int(data.shape[0]/2), data.shape[1], nestH, nestW) | ||
new_target = [] | ||
for i in range(int(data.shape[0]/2)): | ||
new_data[i] = U.nest_images(data[2*i:2*i+2], nestH, nestW) | ||
new_target.append(U.remove_repetitive_labels([target[2*i].item(), target[2*i+1].item()]))#just a list of int | ||
|
||
loss = train_loss(new_data.to(device), new_target) | ||
|
||
grads = grad(loss, Ws, create_graph=True) | ||
TrainLoss.append(loss.item()) | ||
if batch_idx%100==0: | ||
print('Epoch: {}; batch: {}; train loss: {}'.format(epoch, batch_idx, TrainLoss[-1])) | ||
|
||
v = [torch.randn(W.shape, device=device) for W in Ws] | ||
Hv = grad(grads, Ws, v)#just let Hv=grads if using whitened gradients | ||
with torch.no_grad(): | ||
Qs = [psgd.update_precond_kron(q[0], q[1], dw, dg) for (q, dw, dg) in zip(Qs, v, Hv)] | ||
pre_grads = [psgd.precond_grad_kron(q[0], q[1], g) for (q, g) in zip(Qs, grads)] | ||
grad_norm = torch.sqrt(sum([torch.sum(g*g) for g in pre_grads])) | ||
step_adjust = min(grad_norm_clip_thr/(grad_norm + 1.2e-38), 1.0) | ||
for i in range(len(Ws)): | ||
Ws[i] -= step_adjust*step_size*pre_grads[i] | ||
|
||
TestLoss.append(test_loss()) | ||
print('Epoch: {}; best test loss: {}'.format(epoch, min(TestLoss))) | ||
if TestLoss[-1] < BestTestLoss: | ||
BestTestLoss = TestLoss[-1] | ||
with open('mnist_model', 'wb') as f: | ||
pickle.dump(Ws, f) | ||
if epoch+1 == int(num_epochs/2): | ||
step_size = 0.1*step_size |