-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
165 lines (141 loc) · 5.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import argparse
import logging
import os
import shutil
from datetime import datetime
from typing import Dict, Tuple
import torch
import torch.utils.checkpoint
from torch.utils.data import Dataset, DataLoader
from accelerate import Accelerator
from accelerate.utils import ProjectConfiguration
from diffusers.schedulers import DDIMScheduler
from omegaconf import OmegaConf
import tensorboard
from leaf.pipeline import LeafPipeline
from leaf.unet import UNetModel
from leaf.autoencoder import AutoencoderKL, AEEncoder
from src.dataset import get_dataset
from src.trainer import LeafTrainer
from src.util.config_util import DataConfig, ProjectConfig
from src.util.logging_util import config_logging
def get_dataloaders(data_cfg: DataConfig, datasets: Dict[str, Dataset]) -> Tuple[DataLoader, DataLoader, DataLoader]:
train_dataset, valid_dataset, test_dataset = datasets["train"], datasets["val"], datasets["test"]
return (
DataLoader(train_dataset, data_cfg.train_batch_size, shuffle=True, num_workers=data_cfg.dataloader_num_workers, pin_memory=True, drop_last=True),
DataLoader(valid_dataset, data_cfg.valid_batch_size, shuffle=False, num_workers=data_cfg.dataloader_num_workers, pin_memory=True),
DataLoader(test_dataset, data_cfg.valid_batch_size, shuffle=False, num_workers=data_cfg.dataloader_num_workers, pin_memory=True),
)
def main():
t_start = datetime.now()
logging.info(f"start at {t_start}")
parser = argparse.ArgumentParser()
parser.add_argument("--config", default="./configs/config.yaml", type=str, help="Path to training config.")
args = parser.parse_args()
# -------------------- Initialization --------------------
cfg = ProjectConfig(**OmegaConf.load(args.config))
output_dir = cfg.accelerator.output_dir
# Full job name
pure_job_name = os.path.basename(args.config).split(".")[0]
# Add time prefix
if cfg.accelerator.add_datetime_prefix:
job_name = f"{t_start.strftime('%y_%m_%d-%H_%M_%S')}-{pure_job_name}"
else:
job_name = pure_job_name
# Output dir
if output_dir is not None:
out_dir_run = os.path.join(output_dir, job_name)
else:
out_dir_run = os.path.join("./output", job_name)
os.makedirs(out_dir_run, exist_ok=False)
# Other directories
out_dir_ckpt = os.path.join(out_dir_run, "checkpoint")
if not os.path.exists(out_dir_ckpt):
os.makedirs(out_dir_ckpt)
out_dir_tb = os.path.join(out_dir_run, "tensorboard")
if not os.path.exists(out_dir_tb):
os.makedirs(out_dir_tb)
out_dir_eval = os.path.join(out_dir_run, "evaluation")
if not os.path.exists(out_dir_eval):
os.makedirs(out_dir_eval)
out_dir_vis = os.path.join(out_dir_run, "visualization")
if not os.path.exists(out_dir_vis):
os.makedirs(out_dir_vis)
# -------------------- Logging settings --------------------
logging_cfg = {
"filename": "logging.log",
"format": ' %(asctime)s - %(levelname)s -%(filename)s - %(funcName)s >> %(message)s',
"console_level": 20,
"file_level": 10,
}
config_logging(logging_cfg, out_dir=out_dir_run)
accelerator = Accelerator(
gradient_accumulation_steps=cfg.accelerator.gradient_accumulation_steps,
mixed_precision=cfg.accelerator.mixed_precision,
log_with=cfg.accelerator.report_to,
project_config=ProjectConfiguration(project_dir=out_dir_run, logging_dir=out_dir_tb),
)
logging.debug(f"config: {cfg}")
# -------------------- Device --------------------
# Enable TF32 for faster training on Ampere GPUs
if cfg.accelerator.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# -------------------- Data --------------------
logging.info(f"Loading dataset {cfg.data.dataset_name}")
datasets_dict = get_dataset(
base_data_dir=cfg.data.base_data_dir,
dataset_name=cfg.data.dataset_name,
resolution=cfg.data.resize,
seed=cfg.accelerator.seed,
)
train_dataloader, valid_dataloader, test_dataloader = get_dataloaders(
data_cfg=cfg.data, datasets=datasets_dict
)
# -------------------- Model --------------------
# UNet
unet = UNetModel.from_pretrained(cfg.model.pretrained_path, subfolder="unet")
logging.info(f"Loading pretrained UNet from {os.path.join(cfg.model.pretrained_path, 'unet')}")
# VAE
vae = AutoencoderKL.from_pretrained(cfg.model.pretrained_path, subfolder="vae")
logging.info(f"Loading pretrained VAE from {os.path.join(cfg.model.pretrained_path, 'vae')}")
# Noise scheduler
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.0015,
beta_end=0.0155,
prediction_type=cfg.model.prediction_type
)
# Latent encoder
latent_encoder = AEEncoder()
latent_encoder.init_from_pretrained(vae)
model = LeafPipeline(
unet=unet,
vae=vae,
scheduler=noise_scheduler,
latent_encoder=latent_encoder,
scale_factor=cfg.data.scale_factor
)
# -------------------- Trainer --------------------
trainer = LeafTrainer(
cfg=cfg,
accelerator=accelerator,
model=model,
train_dataloader=train_dataloader,
out_dir_ckpt=out_dir_ckpt,
out_dir_eval=out_dir_eval,
out_dir_vis=out_dir_vis,
valid_dataloader=valid_dataloader,
test_dataloader=test_dataloader,
pred_to_onehot=datasets_dict["pred_to_onehot"],
gt_to_onehot=datasets_dict["gt_to_onehot"],
)
# -------------------- Training & Evaluation Loop --------------------
try:
trainer.train()
except Exception as e:
logging.exception(e)
logging.info(f"Exception catched, delete current running directory {out_dir_run}")
shutil.rmtree(out_dir_run)
if __name__ == "__main__":
main()