forked from helipiotr/beng_thesis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathINS_mechanisation.m
149 lines (112 loc) · 3.55 KB
/
INS_mechanisation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
function [ r_n_out , v_n_out, q_out ] = ...
INS_mechanisation( acc_b, om_b_ib, r_n_0, v_n_0, q_0, ins_del_t,...
GPS_acquired, kalman_correction)
%INS_MECHANISATION This function computes the appropriate state values
% based on accelerometer and gyroscope readings
% This function takes acceleration, gyroscope readings and returns next
% position, velocity and orientation quaterion (q_out)
persistent i; %variable counting run number
persistent r_n;
persistent v_n;
persistent q;
if( isempty(i) == 0)
i=i+1;
else
i=0;
% REMOVE IN FURTHER VERSIONS
% hard-coded values of r_n and v_n -> they have to be changed in
% further versions, Warszawa 52.259 deg N, 21.020 deg E, 144 meters over
% ellipsioid
%r_n_traj_gen = [deg2rad(52.259) deg2rad(21.020) 144]';
%v_n_0= [ 0 0 0]';
% quaternion transformation will be used
%q_0=[0 0 0 1]';
r_n=r_n_0;
v_n=v_n_0;
q=q_0;
end
%correcting with values from kalman filter
if GPS_acquired
del_r_n = kalman_correction(1:3);
del_v_n = kalman_correction(4:6);
r_n=r_n-del_r_n;
v_n=v_n-del_v_n;
eps_n=kalman_correction(7);
eps_e=kalman_correction(8);
eps_d=kalman_correction(9);
E=[0 -eps_d eps_e;
eps_d 0 -eps_n;
eps_e eps_n 0];
C_n_b=q2C(q);
C_n_b=(eye(3,3)+E)*C_n_b;
q=C2q(C_n_b);
end
%computation only: persistient values will be updated later
phi=r_n(1);
lam=r_n(2);
h=r_n(3);
gamma=get_gamma(phi,h);
gamma_n=[0 0 gamma]';
om_e_ie=[0 0 7.2921158*10^-5]';
a= 6378137.0; %semi-major axis of the reference ellipsoid
f=1/298.257223563; %flattening
e=sqrt(2*f-f^2); %linear eccentricity of the reference ellipsoid
M=a*(1-e^2)/(1-e^2*sin(phi)^2)^(3/2);
N=a/sqrt(1-e^2*sin(phi)^2);
C_n_e=[-sin(phi)*cos(lam), -sin(phi)*sin(lam), cos(phi);
-sin(lam), cos(lam), 0;
-cos(phi)*cos(lam), -cos(phi)*sin(lam), -sin(phi)];
%dphi=v_n(1);
%dlam=v_n(2);
%D^-1
vel2pos=[1/(M+h) 0 0 ;
0 1/((N+h)*cos(phi)) 0;
0 0 -1];
dr_n=vel2pos*v_n;
dphi=dr_n(1);
dlam=dr_n(2);
om_n_en=[dlam*cos(phi) -dphi -dlam*sin(phi)]';
om_n_ie=C_n_e*om_e_ie;
om_n_in=om_n_en+om_n_ie;
C_n_b=q2C(q);
C_b_n=C_n_b';
om_b_in=C_b_n*om_n_in;
%om_b_nb=om_b_ib-om_b_in;
%time difference assumed constant: might however be variale in later
%stages of development
%updating values for the next iteration
del_theta_b_nb=om_b_ib*ins_del_t-C_b_n*(om_n_ie+om_n_en)*ins_del_t;
del_theta_x=del_theta_b_nb(1);
del_theta_y=del_theta_b_nb(2);
del_theta_z=del_theta_b_nb(3);
del_theta=norm(del_theta_b_nb);
del_v_b_n=-acc_b*ins_del_t; %not explicitly stated in paper
sculling=[1 del_theta_z/2 -del_theta_y/2;
-del_theta_z/2 1 del_theta_x/2;
del_theta_y/2 -del_theta_x/2 1];
del_v_n_f=C_n_b*sculling*del_v_b_n;
del_v_n = del_v_n_f - cross((2*om_n_ie+om_n_en),v_n*ins_del_t) + gamma_n*ins_del_t;
v_n_new= v_n + del_v_n;
r_n=r_n+0.5*vel2pos*(v_n_new+v_n)*ins_del_t;
v_n=v_n_new;
%There sould be inequality, however I'm not yet sure what kind of
if(del_theta~=0)
s=2/del_theta*sin(del_theta/2);
c=2*(cos(del_theta/2)-1);
%something was odd here in the last line state d in paper : corrected
q_del_theta_mat=[c s*del_theta_z -s*del_theta_y s*del_theta_x;
-s*del_theta_z c s*del_theta_x s*del_theta_y;
s*del_theta_y -s*del_theta_x c s*del_theta_z;
-s*del_theta_x -s*del_theta_y -s*del_theta_z c ];
q=q+0.5*q_del_theta_mat*q;
q=q/norm(q);
else
disp('del_theta yields zero, something might have gone wrong')
end
r_n_out=r_n;
v_n_out=v_n;
q_out=q; %normalisation
if abs(v_n(3))>1
% disp('ziemniak')
end
end