-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAutoFilter.cpp
106 lines (87 loc) · 3.81 KB
/
AutoFilter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include "AutoFilter.h"
// Constructor
AutoFilter::AutoFilter() {
pwmPin = -1;
pwmFrequency = 1000; // Default frequency
}
// Modulation Methods
float AutoFilter::amplitudeModulation(float carrier, float signal) {
return carrier * (1.0 + signal);
}
float AutoFilter::frequencyModulation(float carrier, float modulator, float sensitivity) {
float deltaFreq = sensitivity * modulator;
return carrier * sin(deltaFreq);
}
float AutoFilter::phaseModulation(float carrier, float modulator, float sensitivity) {
float phaseShift = sensitivity * modulator;
return carrier * sin(phaseShift);
}
float AutoFilter::quadratureAmplitudeModulation(float iSignal, float qSignal, float carrier) {
return (iSignal * cos(carrier) - qSignal * sin(carrier));
}
// Pulse Width Modulation (PWM)
void AutoFilter::pulseWidthModulation(int pin, float dutyCycle, int pwmFrequency) {
dutyCycle = constrain(dutyCycle, 0.0, 1.0); // Ensure duty cycle is between 0 and 1
#if defined(ESP32)
// ESP32-specific PWM setup
int channel = 0; // Use channel 0
ledcSetup(channel, pwmFrequency, 8); // Set frequency and 8-bit resolution
ledcAttachPin(pin, channel);
ledcWrite(channel, (int)(dutyCycle * 255)); // Set duty cycle (0-255)
#elif defined(TEENSYDUINO)
// Teensy-specific PWM setup
analogWriteFrequency(pin, pwmFrequency);
analogWrite(pin, (int)(dutyCycle * 255)); // Set duty cycle
#else
// Boards without frequency control
Serial.println("Warning: Custom PWM frequency not supported on this board.");
analogWrite(pin, (int)(dutyCycle * 255)); // Default analogWrite behavior
#endif
}
void AutoFilter::dualPulseWidthModulation(int pin1, int pin2, float dutyCycle, int frequency, int phaseShift) {
// Phase-shifted PWM signals
pulseWidthModulation(pin1, dutyCycle, frequency);
delayMicroseconds(phaseShift); // Adjust phase delay
pulseWidthModulation(pin2, dutyCycle, frequency);
}
// Filtering Methods
float AutoFilter::lowPassFilter(float currentInput, float prevOutput, float alpha) {
return alpha * currentInput + (1.0 - alpha) * prevOutput;
}
float AutoFilter::highPassFilter(float currentInput, float prevInput, float prevOutput, float alpha) {
return alpha * (prevOutput + currentInput - prevInput);
}
float AutoFilter::movingAverageFilter(float input, float *buffer, int bufferSize, int &index) {
buffer[index] = input;
index = (index + 1) % bufferSize;
float sum = 0.0;
for (int i = 0; i < bufferSize; i++) {
sum += buffer[i];
}
return sum / bufferSize;
}
float AutoFilter::exponentialMovingAverage(float currentInput, float prevOutput, float alpha) {
return alpha * currentInput + (1.0 - alpha) * prevOutput;
}
float AutoFilter::kalmanFilter(float currentMeasurement, float &prevEstimate, float &errorCovariance, float processNoise, float measurementNoise) {
float kalmanGain = errorCovariance / (errorCovariance + measurementNoise);
float currentEstimate = prevEstimate + kalmanGain * (currentMeasurement - prevEstimate);
errorCovariance = (1 - kalmanGain) * errorCovariance + fabs(prevEstimate - currentEstimate) * processNoise;
prevEstimate = currentEstimate;
return currentEstimate;
}
// Utility Functions
float AutoFilter::normalize(float input, float inputMin, float inputMax, float outputMin, float outputMax) {
return (input - inputMin) * (outputMax - outputMin) / (inputMax - inputMin) + outputMin;
}
void AutoFilter::discreteFourierTransform(float *input, float *outputReal, float *outputImag, int size) {
for (int k = 0; k < size; k++) {
outputReal[k] = 0;
outputImag[k] = 0;
for (int n = 0; n < size; n++) {
float angle = -2 * M_PI * k * n / size;
outputReal[k] += input[n] * cos(angle);
outputImag[k] += input[n] * sin(angle);
}
}
}