Skip to content
/ D-RMM Public

[ICML 2023] End-to-End Multi-Object Detection with a Regularized Mixture Model

License

Notifications You must be signed in to change notification settings

lhj815/D-RMM

Repository files navigation

[ICML 2023] End-to-End Multi-Object Detection with a Regularized Mixture Model


End-to-End Multi-Object Detection with a Regularized Mixture Model
Jaeyoung Yoo*, Hojun Lee*, Seunghyeon Seo , Inseop Chung, Nojun Kwak
NAVER WEBTOON AI, Seoul National University
* equal contribution

Pytorch implementation for the ICML 2023 paper: End-to-end Multi-Object Detection with a Regularized Mixture Model.
This paper aims to reduce the heuristics of the training process (Figure 1) and improve the reliability of the predicted confidence score (Figure 2).

Exp


Requirements

The codes are tested in the following environment:

  • python 3.8
  • pytorch 1.10
  • CUDA 11.3
  • mmdet 2.12.0
  • mmcv-full 1.3.17

Data Preparation

exist_data_model.md

D-RMM
├── mmdet
├── tools
├── configs
├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017

Installation

get_started.md

pip install torch==1.10.1+cu113 torchvision==0.11.2+cu113  -f https://download.pytorch.org/whl/cu113/torch_stable.html
pip install mmcv-full==1.3.17 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
python setup.py build develop

Training & Test

bash train.sh
bash test.sh

Performances

Sparse R-CNN

Method Backbone AP val2017 AP test-dev Config Link
SRCNN R50 45.0 45.2 config mmdet (reproduced)
SRCNN R101 46.4 46.4 config mmdet (reproduced)
SRCNN Swin-Tiny 47.4 - - -
D-RMM + SRCNN R50 47.0 (+2.0) 46.9 config Google Drive
D-RMM + SRCNN R101 48.0 (+1.6) 48.2 config Google Drive
D-RMM + SRCNN Swin-Tiny 49.9 (+2.5) - TBA TBA

AdaMixer

Method Backbone AP val2017 AP test-dev Config Link
AdaMixer R50 47.0 46.9 Github Github
AdaMixer R101 48.0 48.2 Github Github
AdaMixer Swin-Tiny 48.9 - - -
D-RMM + AdaMixer R50 48.4 (+1.4) 48.7 (+1.8) TBA TBA
D-RMM + AdaMixer R101 49.2 (+1.2) 49.6 (+1.4) TBA TBA
D-RMM + AdaMixer Swin-Tiny 50.7 (+1.8) - TBA TBA

Citation

If you find this work or code useful for your research, please use the following BibTex entry:

@misc{yoo2023endtoend,
      title={End-to-End Multi-Object Detection with a Regularized Mixture Model}, 
      author={Jaeyoung Yoo and Hojun Lee and Seunghyeon Seo and Inseop Chung and Nojun Kwak},
      year={2023},
      eprint={2205.08714},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgment

License

This project is released under the Apache 2.0 license. See LICENSE for the full license text.

D-RMM

Copyright 2022-present NAVER WEBTOON

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.


About

[ICML 2023] End-to-End Multi-Object Detection with a Regularized Mixture Model

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages