-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatabase.py
executable file
·457 lines (366 loc) · 20.1 KB
/
database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# import packages
import mysql.connector
from mysql.connector import errorcode
import asyncio
import json
import pandas as pd
from mysql.connector import cursor
import global_content as gl_content
class DatabaseHelper():
analysis_system = None
cnx = None
cursor = None
def __init__(self, system) -> None:
# receive the context of analysis system
self.analysis_system = system
# define constant
self.one_min_table = [
"1min_ticker_premarket",
"1min_ticker_market",
"1min_ticker_postmarket"
]
self.configuration()
def configuration(self):
config = {
'user': gl_content.DB_USER,
'password': gl_content.DB_PASS,
'host': gl_content.DB_HOST,
}
# create the cursor object
self.cnx = mysql.connector.connect(**config)
self.cursor = self.cnx.cursor(buffered=True)
# create database if doesn't exist
self.cursor.execute('CREATE DATABASE IF NOT EXISTS {}'.format(gl_content.DB_NAME))
self.cursor.execute('USE {}'.format(gl_content.DB_NAME))
# crate tables if doesn't exist
# self.cursor.execute('''DROP TABLE IF EXISTS 1min_ticker_premarket''')
self.cursor.execute('''CREATE TABLE IF NOT EXISTS 1min_ticker_premarket
(symbol varchar(255), date_time varchar(50), open float, high float, low float, close float, volume int)''')
# self.cursor.execute('''DROP TABLE IF EXISTS 1min_ticker_market''')
self.cursor.execute('''CREATE TABLE IF NOT EXISTS 1min_ticker_market
(symbol varchar(255), date_time varchar(50), open float, high float, low float, close float, volume int)''')
# self.cursor.execute('''DROP TABLE IF EXISTS 1min_ticker_postmarket''')
self.cursor.execute('''CREATE TABLE IF NOT EXISTS 1min_ticker_postmarket
(symbol varchar(255), date_time varchar(50), open float, high float, low float, close float, volume int)''')
self.cursor.execute('''CREATE TABLE IF NOT EXISTS ticker_volume_by_day
(symbol varchar(255), date varchar(50), open_price float, high_price float, low_price float, close_price float,
total_volume_day_premarket int, total_volume_day_market int, total_volume_day_postmarket int, total_volume_day int)''')
self.cursor.execute('''CREATE TABLE IF NOT EXISTS ticker_average_by_minute
(symbol varchar(255), last_date varchar(50), latest_close float, average_volume_premarket int,
average_volume_market int, average_volume_postmarket int)''')
self.cursor.execute('''CREATE TABLE IF NOT EXISTS runners_day
(symbol varchar(255), time_of_day varchar(50), avg_min float, last_price float, volume int, price float,
change_volume float, change_price float)''')
self.cursor.execute('''CREATE TABLE IF NOT EXISTS gappers_day
(symbol varchar(255), last_price float, price_day float, price_change float,
change_percent float)''')
def get_average_volume(self, market_type, symbol):
"""get the average volume of specific market type
Args:
market_type (int): market type. [pre-market, market, post-market]
Return:
avg_volume (int): average volume of specific market
"""
field_name = ['average_volume_premarket', 'average_volume_market', 'average_volume_postmarket']
sql = "SELECT {} from ticker_average_by_minute WHERE symbol='{}';".format(
field_name[market_type], symbol)
try:
self.cursor.execute(sql)
result = self.cursor.fetchone()
except Exception as e:
result = None
if result is None:
return result
return result[0]
def get_last_price(self, symbol):
"""Get the last price of specific stock
Args:
symbol (string): the name of the stock
Returns:
the last price of given stock
"""
sql = "SELECT latest_close from ticker_average_by_minute WHERE symbol='{}'".format(
symbol)
try:
self.cursor.execute(sql)
result = self.cursor.fetchone()
except Exception as e:
result = None
if result is None:
return result
return result[0]
def get_stock_1min_data(self, stock, market_type):
sql = "SELECT * from {} WHERE symbol='{}'".format(
self.one_min_table[market_type], stock
)
try:
self.cursor.execute(sql)
result = self.cursor.fetchone()
except Exception as e:
result = None
if result is None:
return result
return result[0]
def keep_daily_tickers(self):
date_string = '{0:04d}_{1:02d}_{2:02d}'.format(
self.analysis_system.current_time.year,
self.analysis_system.current_time.month,
self.analysis_system.current_time.day)
# clone the tables for 1min ticker
self.cursor.execute(
"CREATE TABLE {}_premarket SELECT * FROM 1min_ticker_premarket".format(
date_string))
self.cursor.execute(
"CREATE TABLE {}_market SELECT * FROM 1min_ticker_market".format(
date_string))
self.cursor.execute(
"CREATE TABLE {}_postmarket SELECT * FROM 1min_ticker_postmarket".format(
date_string))
# output data to csv file
results = pd.read_sql_query("SELECT * FROM 1min_ticker_premarket", self.cnx)
results.to_csv("daily_report/{}_premarket.csv".format(date_string), index=False)
results = pd.read_sql_query("SELECT * FROM 1min_ticker_market", self.cnx)
results.to_csv("daily_report/{}_market.csv".format(date_string), index=False)
results = pd.read_sql_query("SELECT * FROM 1min_ticker_postmarket", self.cnx)
results.to_csv("daily_report/{}_postmarket.csv".format(date_string), index=False)
def clear_tables(self):
# clear the 1min_ticker tables of pre-market, market, post-market
self.cursor.execute("DELETE FROM 1min_ticker_premarket")
self.cursor.execute("DELETE FROM 1min_ticker_market")
self.cursor.execute("DELETE FROM 1min_ticker_postmarket")
self.cnx.commit()
def save_runner_info(self, stock, current_time, volume, price, market_type):
time_string = '{0:02d}/{1:02d}/{2:02d}:{3:02d}'.format(
current_time.month, current_time.day, current_time.hour, current_time.minute)
print('-------------------------------------------------')
print("stock : {0}, time : {1}".format(stock, time_string))
print('-------------------------------------------------')
# get the average volume of stock
avg_min = self.get_average_volume(market_type, stock)
if (avg_min == None) and (market_type in [0, 2]):
avg_min = self.get_average_volume(1, stock)
# get last price of stock
sql = '''SELECT latest_close from ticker_average_by_minute WHERE symbol='{}'
'''.format(stock)
self.cursor.execute(sql)
last_price = self.cursor.fetchone()[0]
# calculate the volume change
if avg_min == 0:
change_volume = volume
else:
change_volume = float(volume) / avg_min * 100
# calculate the volume change
change_price = float(price) / last_price * 100
# insert to database
sql = ("INSERT INTO runners_day "
"(symbol, time_of_day, avg_min, last_price, volume, price, change_volume, change_price) "
"VALUES (%s, %s, %s, %s, %s, %s, %s, %s)")
self.cursor.execute(sql, (stock, time_string, avg_min, last_price, volume, price, change_volume, change_price))
self.cnx.commit()
def save_gapper_info(self, stock, last_price, price_day, price_change, price_percent):
sql = ("INSERT INTO gappers_day "
"(symbol, last_price, price_day, price_change, change_percent)"
"VALUES (%s, %s, %s, %s, %s)")
try:
self.cursor.execute(sql, (stock, last_price, price_day, price_change,price_percent))
self.cnx.commit()
except Exception as e:
print(e)
print('***** save_gapper_info *****')
print(stock, last_price, price_day, price_change,price_percent)
def save_one_minute_data(self, current_time, market_type, minute_data):
data_list = minute_data.get_result()
for index in range(len(data_list)):
data_list[index]['date_time'] = '{0:02d}:{1:02d}'.format(current_time.hour, current_time.minute)
# insert to database
sql = "INSERT INTO `{}` ( `symbol`, `date_time`, `open`, `high`, `low`, `close`, `volume` ) \
VALUES ( %(symbol)s, %(date_time)s, %(open)s, %(high)s, %(low)s, %(close)s, %(volume)s ) \
".format(self.one_min_table[market_type])
try:
self.cursor.executemany(sql, data_list)
self.cnx.commit()
except Exception as e:
print(e)
print('***** save_one_minute_data *****')
# print("The issue is occurred when saving the minute data to DB")
def generate_ticker_volume_by_day(self, current_time):
volume_by_day = {}
date_string = '{0:04d}/{1:02d}/{2:02d}'.format(current_time.year, current_time.month, current_time.day)
# ----- 1. get the pre-market info ----- #
# get the high, low, total_volume
sql = "select symbol, MAX(high) high, MIN(low) low, SUM(volume) volume from 1min_ticker_premarket GROUP BY symbol ORDER BY symbol"
# sql = "select * from 1min_ticker_premarket"
self.cursor.execute(sql)
for (symbol, high, low, volume) in self.cursor:
temp_dict = {}
temp_dict['symbol'] = symbol
temp_dict['date'] = date_string
temp_dict['open_price'] = None
temp_dict['high_price'] = high
temp_dict['low_price'] = low
temp_dict['close_price'] = None
temp_dict['total_volume_day_premarket'] = volume
temp_dict['total_volume_day_market'] = 0
temp_dict['total_volume_day_postmarket'] = 0
temp_dict['total_volume_day'] = volume
volume_by_day[symbol] = temp_dict
# get the open price
sql = '''
SELECT 1min_ticker_premarket.symbol, 1min_ticker_premarket.open from 1min_ticker_premarket,
(SELECT symbol, Min(date_time) as open_time from 1min_ticker_premarket GROUP BY symbol) as open_ticker
WHERE 1min_ticker_premarket.symbol = open_ticker.symbol
and 1min_ticker_premarket.date_time = open_ticker.open_time '''
self.cursor.execute(sql)
for (symbol, open) in self.cursor:
volume_by_day[symbol]['open_price'] = open
# get the open price
sql = '''
SELECT 1min_ticker_premarket.symbol, 1min_ticker_premarket.close from 1min_ticker_premarket,
(SELECT symbol, Max(date_time) as close_time from 1min_ticker_premarket GROUP BY symbol) as close_ticker
WHERE 1min_ticker_premarket.symbol = close_ticker.symbol
and 1min_ticker_premarket.date_time = close_ticker.close_time '''
self.cursor.execute(sql)
for (symbol, close) in self.cursor:
volume_by_day[symbol]['close_price'] = close
# ----- 2. get the market info ----- #
# get the high, low, total_volume
sql = "select symbol, MAX(high) high, MIN(low) low, SUM(volume) volume from 1min_ticker_market GROUP BY symbol ORDER BY symbol"
# sql = "select * from 1min_ticker_premarket"
self.cursor.execute(sql)
for (symbol, high, low, volume) in self.cursor:
if symbol in volume_by_day.keys():
if high > volume_by_day[symbol]['high_price']:
volume_by_day[symbol]['high_price'] = high
if low < volume_by_day[symbol]['low_price']:
volume_by_day[symbol]['low_price'] = low
volume_by_day[symbol]['total_volume_day_market'] = volume
volume_by_day[symbol]['total_volume_day'] += volume
else:
temp_dict = {}
temp_dict['symbol'] = symbol
temp_dict['date'] = date_string
temp_dict['open_price'] = None
temp_dict['high_price'] = high
temp_dict['low_price'] = low
temp_dict['close_price'] = None
temp_dict['total_volume_day_premarket'] = 0
temp_dict['total_volume_day_market'] = volume
temp_dict['total_volume_day_postmarket'] = 0
temp_dict['total_volume_day'] = volume
volume_by_day[symbol] = temp_dict
# get the open price
sql = '''
SELECT 1min_ticker_market.symbol, 1min_ticker_market.open from 1min_ticker_market,
(SELECT symbol, Min(date_time) as open_time from 1min_ticker_market GROUP BY symbol) as open_ticker
WHERE 1min_ticker_market.symbol = open_ticker.symbol
and 1min_ticker_market.date_time = open_ticker.open_time '''
self.cursor.execute(sql)
for (symbol, open) in self.cursor:
if volume_by_day[symbol]['open_price'] is None:
volume_by_day[symbol]['open_price'] = open
# get the open price
sql = '''
SELECT 1min_ticker_market.symbol, 1min_ticker_market.close from 1min_ticker_market,
(SELECT symbol, Max(date_time) as close_time from 1min_ticker_market GROUP BY symbol) as close_ticker
WHERE 1min_ticker_market.symbol = close_ticker.symbol
and 1min_ticker_market.date_time = close_ticker.close_time '''
self.cursor.execute(sql)
for (symbol, close) in self.cursor:
volume_by_day[symbol]['close_price'] = close
# ----- 3. get the post-market info ----- #
# get the high, low, total_volume
sql = "select symbol, MAX(high) high, MIN(low) low, SUM(volume) volume from 1min_ticker_postmarket GROUP BY symbol ORDER BY symbol"
# sql = "select * from 1min_ticker_premarket"
self.cursor.execute(sql)
for (symbol, high, low, volume) in self.cursor:
if symbol in volume_by_day.keys():
if high > volume_by_day[symbol]['high_price']:
volume_by_day[symbol]['high_price'] = high
if low < volume_by_day[symbol]['low_price']:
volume_by_day[symbol]['low_price'] = low
volume_by_day[symbol]['total_volume_day_postmarket'] = volume
volume_by_day[symbol]['total_volume_day'] += volume
else:
temp_dict = {}
temp_dict['symbol'] = symbol
temp_dict['date'] = date_string
temp_dict['open_price'] = None
temp_dict['high_price'] = high
temp_dict['low_price'] = low
temp_dict['close_price'] = None
temp_dict['total_volume_day_premarket'] = 0
temp_dict['total_volume_day_market'] = 0
temp_dict['total_volume_day_postmarket'] = volume
temp_dict['total_volume_day'] = volume
volume_by_day[symbol] = temp_dict
# get the open price
sql = '''
SELECT 1min_ticker_postmarket.symbol, 1min_ticker_postmarket.open from 1min_ticker_postmarket,
(SELECT symbol, Min(date_time) as open_time from 1min_ticker_postmarket GROUP BY symbol) as open_ticker
WHERE 1min_ticker_postmarket.symbol = open_ticker.symbol
and 1min_ticker_postmarket.date_time = open_ticker.open_time '''
self.cursor.execute(sql)
for (symbol, open) in self.cursor:
if volume_by_day[symbol]['open_price'] is None:
volume_by_day[symbol]['open_price'] = open
# get the open price
sql = '''
SELECT 1min_ticker_postmarket.symbol, 1min_ticker_postmarket.close from 1min_ticker_postmarket,
(SELECT symbol, Max(date_time) as close_time from 1min_ticker_postmarket GROUP BY symbol) as close_ticker
WHERE 1min_ticker_postmarket.symbol = close_ticker.symbol
and 1min_ticker_postmarket.date_time = close_ticker.close_time '''
self.cursor.execute(sql)
for (symbol, close) in self.cursor:
volume_by_day[symbol]['close_price'] = close
sql = '''
INSERT INTO `{}`
( `symbol`, `date`, `open_price`, `high_price`, `low_price`, `close_price`, `total_volume_day_premarket`,
`total_volume_day_market`, `total_volume_day_postmarket`, `total_volume_day` ) \
VALUES ( %(symbol)s, %(date)s, %(open_price)s, %(high_price)s, %(low_price)s, %(close_price)s, %(total_volume_day_premarket)s,
%(total_volume_day_market)s, %(total_volume_day_postmarket)s, %(total_volume_day)s ) \
'''.format('ticker_volume_by_day')
self.cursor.executemany(sql, list(volume_by_day.values()))
self.cnx.commit()
def generate_ticker_average_by_minute(self):
average_value = []
# extract info from ticker by day
sql = '''
SELECT ticker_volume_by_day.symbol, date, close_price,
(last_info.average_volume_premarket / num_date / 150) as average_volume_premarket,
(last_info.average_volume_market / num_date / 390) as average_volume_market,
(last_info.average_volume_postmarket / num_date / 240) as average_volume_postmarket
from ticker_volume_by_day,
(SELECT symbol, MAX(date) as last_date,
SUM(total_volume_day_premarket) as average_volume_premarket,
SUM(total_volume_day_market) as average_volume_market,
SUM(total_volume_day_postmarket) as average_volume_postmarket,
COUNT(symbol) as num_date
from ticker_volume_by_day GROUP BY symbol) as last_info
WHERE ticker_volume_by_day.symbol = last_info.symbol
AND ticker_volume_by_day.date = last_info.last_date
'''
self.cursor.execute(sql)
for symbol, date, close, avg_pre, avg_market, avg_post in self.cursor:
temp_dict = {}
temp_dict['symbol'] = symbol
temp_dict['last_date'] = date
temp_dict['latest_close'] = close
temp_dict['average_volume_premarket'] = int(avg_pre) if avg_pre is not None else avg_pre
temp_dict['average_volume_market'] = int(avg_market) if avg_market is not None else avg_market
temp_dict['average_volume_postmarket'] = int(avg_post) if avg_post is not None else avg_post
average_value.append(temp_dict)
# save info to database
sql = '''
INSERT INTO `{}`
( `symbol`, `last_date`, `latest_close`, `average_volume_premarket`, `average_volume_market`, `average_volume_postmarket`)
VALUES ( %(symbol)s, %(last_date)s, %(latest_close)s, %(average_volume_premarket)s, %(average_volume_market)s, %(average_volume_postmarket)s )
'''.format('ticker_average_by_minute')
self.cursor.executemany(sql, average_value)
self.cnx.commit()
# output data to json
with open('average_min.json', 'w') as outfile:
json.dump(average_value, outfile)
# keep data
self.keep_daily_tickers()
# clear tables to ready for next day
self.clear_tables()