-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
344 lines (275 loc) · 11.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
'''
Train SOTA nets on MNIST, FashionMNIST or CIFAR10 with PyTorch.
[see readme.md]
'''
import os
import argparse
import time
import pickle
from models import *
import copy
from functools import partial
from init import init_fun
from optim_loss import loss_func, opt_algo, measure_accuracy
def run(args):
best_acc = 0 # best test accuracy
criterion = partial(loss_func, args)
trainloader, testloader, net0 = init_fun(args)
# scale batch size when smaller than train-set size
if (args.batch_size <= args.ptr) and args.scale_batch_size:
args.batch_size = args.ptr // 2
if args.save_dynamics:
dynamics = [{
'acc': 0.,
'epoch': -1,
'net': copy.deepcopy(net0.state_dict())
}]
else:
dynamics = None
loss = []
terr = []
best = dict()
trloss_flag = 0
for net, epoch, losstr in train(args, trainloader, net0, criterion):
assert str(losstr) != 'nan', 'Loss is nan value!!'
loss.append(losstr)
# avoid computing accuracy each and every epoch if dataset is small and epochs are rescaled
if epoch > 250:
if epoch % (args.epochs // 250) != 0: continue
acc = test(args, testloader, net, criterion, net0)
terr.append(100 - acc)
if args.save_dynamics and (epoch in (10 ** torch.linspace(-1, math.log10(args.epochs), 30)).int().unique()):
# save dynamics at 30 log-spaced points in time
dynamics.append({
'acc': acc,
'epoch': epoch,
'net': copy.deepcopy(net.state_dict())
})
if acc > best_acc:
best['acc'] = acc
best['epoch'] = epoch
if args.save_best_net:
best['net'] = copy.deepcopy(net.state_dict())
# if args.save_dynamics:
# dynamics.append(best)
best_acc = acc
print(f'BEST ACCURACY ({acc:.02f}) at epoch {epoch+1} !!')
out = {
'args': args,
'train loss': loss,
'dynamics': dynamics,
'best': best,
}
yield out
if losstr == 0:
trloss_flag += 1
if trloss_flag >= args.zero_loss_epochs:
break
try:
wo = weights_evolution(net0, net)
except:
print('Weights evolution failed!')
wo = None
out = {
'args': args,
'train loss': loss,
'terr': terr,
'dynamics': dynamics,
'init': copy.deepcopy(net0.state_dict()) if args.save_init_net else None,
'best': best,
'last': copy.deepcopy(net.state_dict()) if args.random_labels or args.save_last_net else None,
'weight_evo': wo,
}
yield out
def train(args, trainloader, net0, criterion):
net = copy.deepcopy(net0)
optimizer, scheduler = opt_algo(args, net)
print(f'Training for {args.epochs} epochs...')
start_time = time.time()
for epoch in range(args.epochs):
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(args.device), targets.to(args.device)
optimizer.zero_grad()
outputs = net(inputs).squeeze()
if args.featlazy:
with torch.no_grad():
out0 = net0(inputs).squeeze()
loss = criterion(outputs - out0, targets)
else:
out0 = 0
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
correct, total = measure_accuracy(args, outputs, out0, targets, correct, total)
avg_epoch_time = (time.time() - start_time) / (epoch + 1)
print(f"[Train epoch {epoch+1} / {args.epochs}, {print_time(avg_epoch_time)}/epoch, ETA: {print_time(avg_epoch_time * (args.epochs - epoch - 1))}]"
f"[tr.Loss: {train_loss * args.alpha / (batch_idx + 1):.03f}]"
f"[tr.Acc: {100.*correct/total:.03f}, {correct} / {total}]")
scheduler.step()
yield net, epoch, train_loss / (batch_idx + 1)
def test(args, testloader, net, criterion, net0=None):
net.eval()
if net0 is None:
net0 = lambda x: 0
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(args.device), targets.to(args.device)
outputs = net(inputs).squeeze()
if args.featlazy:
out0 = net0(inputs).squeeze()
loss = criterion(outputs - out0, targets)
else:
out0 = 0
loss = criterion(outputs, targets)
test_loss += loss.item()
correct, total = measure_accuracy(args, outputs, out0, targets, correct, total)
print(
f"[TEST][te.Loss: {test_loss * args.alpha / (batch_idx + 1):.03f}]"
f"[te.Acc: {100. * correct / total:.03f}, {correct} / {total}]")
return 100. * correct / total
# timing function
def print_time(elapsed_time):
elapsed_seconds = round(elapsed_time)
m, s = divmod(elapsed_seconds, 60)
h, m = divmod(m, 60)
elapsed_time = []
if h > 0:
elapsed_time.append(f'{h}h')
if not (h == 0 and m == 0):
elapsed_time.append(f'{m:02}m')
elapsed_time.append(f'{s:02}s')
return ''.join(elapsed_time)
def weights_evolution(f0, f):
s0 = f0.state_dict()
s = f.state_dict()
nd = 0
for k in s:
nd += (s0[k] - s[k]).norm() / s0[k].norm()
nd /= len(s)
return nd
def main():
parser = argparse.ArgumentParser()
### Tensors type ###
parser.add_argument("--device", type=str, default='cuda')
parser.add_argument("--dtype", type=str, default='float64')
### Seeds ###
parser.add_argument("--seed_init", type=int, default=0)
parser.add_argument("--seed_net", type=int, default=-1)
parser.add_argument("--seed_data", type=int, default=-1)
### DATASET ARGS ###
parser.add_argument("--dataset", type=str, required=True)
parser.add_argument("--ptr", type=int, default=0)
parser.add_argument("--pte", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--scale_batch_size", type=int, default=0)
## TwoPoints dataset args ##
parser.add_argument("--labelling", type=str, default='distance')
parser.add_argument("--xi", type=float, default=14)
parser.add_argument("--gap", type=float, default=2)
parser.add_argument("--norm", type=str, default='L2')
parser.add_argument("--pbc", type=int, default=0)
parser.add_argument("--ch", type=int, default=0)
parser.add_argument("--d", type=int, default=28)
parser.add_argument("--background_noise", type=float, default=0)
## tinyImageNet args ##
parser.add_argument("--group_tiny_classes", type=int, default=0)
## diffeoDataset args ##
parser.add_argument("--between_class_T", type=float, default=1e-5)
parser.add_argument("--within_class_T", type=float, default=1e-3)
## data augmentations ##
parser.add_argument("--random_crop", type=int, default=0)
parser.add_argument("--hflip", type=int, default=1)
parser.add_argument("--diffeo", type=int, required=True)
# diffeo augmentation params #
parser.add_argument("--sT", type=float, default=2.)
parser.add_argument("--rT", type=float, default=1.)
parser.add_argument("--scut", type=float, default=2.)
parser.add_argument("--rcut", type=float, default=1.)
parser.add_argument("--cutmin", type=int, default=1)
parser.add_argument("--cutmax", type=int, default=15)
## label / data corruptions ##
parser.add_argument("--black_and_white", type=int, default=0)
parser.add_argument("--gaussian_corruption_std", type=float, default=0.)
parser.add_argument("--corruption_subspace_dimension", type=int, default=0)
parser.add_argument("--random_labels", type=int, default=0)
parser.add_argument("--train_filtered", type=int, default=0.)
parser.add_argument("--filter_p", type=float, default=0.5)
### ARCHITECTURES ARGS ###
parser.add_argument("--net", type=str, required=True)
parser.add_argument("--random_features", type=int, default=0)
parser.add_argument("--pretrained", type=int, default=0)
## Nets params ##
parser.add_argument("--width", type=int, default=64)
parser.add_argument("--depth", type=int, default=3)
parser.add_argument("--width_factor", type=float, default=1.)
parser.add_argument("--pooling", type=str, default='max')
parser.add_argument("--filter_size", type=int, default=5)
parser.add_argument("--pooling_size", type=int, default=4)
parser.add_argument("--stride", type=int, default=2)
parser.add_argument("--dropout", type=float, default=0)
parser.add_argument("--param_list", type=int, default=0, help='Make parameters list for NTK calculation')
parser.add_argument("--bias", type=int, default=1, help='for some archs, controls bias presence')
parser.add_argument("--batch_norm", type=int, default=0)
## Scattering transform ##
parser.add_argument("--scattering_mode", type=int, default=0)
parser.add_argument("--J", type=int, default=2)
parser.add_argument("--L", type=int, default=8)
### ALGORITHM ARGS ###
parser.add_argument("--loss", type=str, default='cross_entropy')
parser.add_argument("--optim", type=str, default='sgd')
parser.add_argument("--scheduler", type=str, default='cosineannealing')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--weight_decay', default=5e-4, type=float)
parser.add_argument("--epochs", type=int, default=250)
parser.add_argument("--zero_loss_epochs", type=int, default=0)
parser.add_argument("--rescale_epochs", type=int, default=0)
## Feature vs. Lazy: alpha trick ##
parser.add_argument("--featlazy", type=int, default=0)
parser.add_argument("--alpha", type=float, default=1.)
parser.add_argument("--alphapowerloss", type=int, default=1)
### SAVING ARGS ###
parser.add_argument("--save_init_net", type=int, default=1)
parser.add_argument("--save_best_net", type=int, default=1)
parser.add_argument("--save_last_net", type=int, default=1)
parser.add_argument("--save_dynamics", type=int, default=0)
## saving path ##
parser.add_argument("--pickle", type=str, required=False, default='None')
parser.add_argument("--output", type=str, required=False, default='None')
args = parser.parse_args()
if args.pickle == 'None':
assert args.output != 'None', 'either `pickle` or `output` must be given to the parser!!'
args.pickle = args.output
if args.batch_size == 0:
args.batch_size = args.ptr
with open(args.output, 'wb') as handle:
pickle.dump(args, handle)
try:
for data in run(args):
with open(args.output, 'wb') as handle:
pickle.dump(args, handle)
pickle.dump(data, handle)
except:
os.remove(args.output)
raise
# torch.save(args, args.pickle)
# saved = False
# try:
# for res in run(args):
# with open(args.pickle, 'wb') as f:
# torch.save(args, f, _use_new_zipfile_serialization=False)
# torch.save(res, f, _use_new_zipfile_serialization=False)
# saved = True
# except:
# if not saved:
# os.remove(args.pickle)
# raise
if __name__ == "__main__":
main()