For more detailed Research Documentation, visit: HAHD Research Documentation
The Human-Aligned Hazardous Driving (HAHD) project is an initiative focused on collecting, processing, and analyzing driving behavior data to train machine learning models that align autonomous vehicle decision-making with human driving tendencies. This project consists of three main components:
HAHD/
├── data/
│ ├── processed/ # Processed data after running the transform and processing (ETL)
│ | ├── driving_videos/
│ | ├── badgazedata.csv
│ | ├── normalized_gaze_data.csv
│ | ├── final_user_survey_data.csv
│ | ├── binned_video_dat_wo_user.csv
│ | ├── aggregate_gaze_data_by_video.csv
│ ├── raw/
│ | ├── driving_videos/ # Videos from s3 bucket after running extraction (ETL)
│ | ├── survey_results_raw.csv # Data from MongoDB running extraction (ETL)
│ | ├── users_data.csv # Data from MongoDB running extraction (ETL)
├── EDA/ # EDA Folder
├── ETL/ # Folder with ETL process
├── frontend/ # code for frontend of the data collection (survey) web app
├── server/ # code for backend of the data collection (survey) web app
├── VideoProcessingManagement # code to process the driving footage before upload to S3 bucket
├── .env
├── README.md
├── package.json
├── package-lock.json
├── .gitignore
├── requirements.txt
├── sumulationGazePipeline.py # TBD
-
Video Processing & Data Upload:
VideoProcessingManagement README -
Driving Simulation Web Application:
-
ETL Pipeline:
ETL README -
Exploratory Data Analysis:
EDA README -
Model Training and Evaluation:
Models README
git clone https://github.com/Onyx-AI-LLC/Human-Alignment-Hazardous-Driving-Detection.git
cd Human-Alignment-Hazardous-Driving-Detection
On macOS/Linux:
python3 -m venv venv
source venv/bin/activate
On Windows:
python -m venv venv
venv\Scripts\activate
pip install -r requirements.txt
python main.py
-- This research is made possible due to collaboration between Duke University & Onyx AI LLC.