diff --git a/geometric/nifty.py b/geometric/nifty.py index b6a8d60c..c5d82ea5 100644 --- a/geometric/nifty.py +++ b/geometric/nifty.py @@ -830,10 +830,12 @@ def createWorkQueue(wq_port, debug=True, name=package): if debug: work_queue.set_debug_flag('all') WORK_QUEUE = work_queue.WorkQueue(port=wq_port) - WORK_QUEUE.specify_name(name) + # LPW 2025-01-23 Commenting out the following line because it makes deleting the WQ no longer work. + # WORK_QUEUE.specify_name(name) # QYD: prefer the worker that is fastest in previous tasks # another choice is first-come-first serve: WORK_QUEUE_SCHEDULE_FCFS - WORK_QUEUE.specify_algorithm(work_queue.WORK_QUEUE_SCHEDULE_TIME) + # LPW 2025-01-23 Commenting out the following line because it makes deleting the WQ no longer work. + # WORK_QUEUE.specify_algorithm(work_queue.WORK_QUEUE_SCHEDULE_TIME) # QYD: We don't want to specify the following extremely long keepalive times # because they will prevent checking "dead" workers, causing the program to wait forever #WORK_QUEUE.specify_keepalive_timeout(8640000) diff --git a/geometric/tests/test_terachem.py b/geometric/tests/test_terachem.py index ca66b69e..e11bf3a2 100644 --- a/geometric/tests/test_terachem.py +++ b/geometric/tests/test_terachem.py @@ -118,14 +118,14 @@ def test_terachem_qmmm_openmm(self, localizer, workqueue): else: result = engine.calc_new(coords, 'run.tmp')['gradient'] # Compare result - refgrad = np.array([[-0.0146181655, 0.0413077637, -0.0000000018], - [-0.0035848878, -0.0059011543, -0.0092284233], - [-0.0035848900, -0.0059011520, 0.0092284240], - [ 0.0116421807, -0.0005882161, -0.0000000007], - [ 0.0082058550, -0.0232158055, 0.0000000018], - [-0.0016073291, -0.0027339830, 0.0043185120], - [-0.0016073291, -0.0027339829, -0.0043185120], - [ 0.0051545658, -0.0002334698, -0.0000000000]]).flatten() + refgrad = np.array([[-0.0087843182, 0.0248112145, 0.0000000045], + [-0.0035052067, -0.0062861883, -0.0093217504], + [-0.0035052036, -0.0062861880, 0.0093217464], + [ 0.0118851362, -0.0009251753, 0.0000000006], + [ 0.0071183928, -0.0200906153, -0.0000000012], + [-0.0007386155, 0.0029989473, -0.0004150336], + [-0.0007386155, 0.0029989474, 0.0004150337], + [-0.0017315695, 0.0027790577, -0.0000000000]]).flatten() np.testing.assert_almost_equal(result, refgrad, decimal=6) def test_edit_tcin(localizer):