-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
408 lines (357 loc) · 15.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
from itertools import islice
import os
import cv2
import pandas as pd
import pretrainedmodels as ptm
from sacred import Experiment
from sacred.observers import FileStorageObserver, TelegramObserver
from sklearn.metrics import roc_auc_score
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import models
from torchvision.utils import save_image, make_grid
from tqdm import tqdm
from auglib.augmentation import Augmentations, set_seeds
from auglib.dataset_loader import CSVDataset, CSVDatasetWithName
from auglib.meters import AverageMeter
from auglib.test import test_with_augmentation
from auglib.models.MobileNetV2 import MobileNetV2
ex = Experiment()
fs_observer = FileStorageObserver.create('results')
ex.observers.append(fs_observer)
TELEGRAM_KEY = 'telegram.json'
if os.path.isfile(TELEGRAM_KEY):
telegram_obs = TelegramObserver.from_config('telegram.json')
ex.observers.append(telegram_obs)
@ex.config
def cfg():
train_root = None # path to train images
train_csv = None # path to train CSV
val_root = None # path to validation images
val_csv = None # path to validation CSV
test_root = None # path to test images
test_csv = None # path to test CSV
epochs = 30 # number of epochs
batch_size = 32 # batch size
num_workers = 8 # parallel jobs for data loading and augmentation
model_name = None # model
val_samples = 16 # number of samples per image in validation
test_samples = 64 # number of samples per image in test
early_stopping_patience = 8 # patience for early stopping
images_per_epoch = None # number of images per epoch
limit_data = False # limit dataset to N images
split_id = None # split id (int)
# augmentations
aug = {
'hflip': False, # Random Horizontal Flip
'vflip': False, # Random Vertical Flip
'rotation': 0, # Rotation (in degrees)
'shear': 0, # Shear (in degrees)
'scale': 1.0, # Scale (tuple (min, max))
'color_contrast': 0, # Color Jitter: Contrast
'color_saturation': 0, # Color Jitter: Saturation
'color_brightness': 0, # Color Jitter: Brightness
'color_hue': 0, # Color Jitter: Hue
'random_crop': False, # Random Crops
'random_erasing': False, # Random Erasing
'piecewise_affine': False, # Piecewise Affine
'tps': False, # TPS Affine
}
def train_epoch(device, model, dataloaders, criterion, optimizer,
batches_per_epoch=None):
losses = AverageMeter()
accuracies = AverageMeter()
all_preds = []
all_labels = []
model.train()
if batches_per_epoch:
# Another option would be to use a PyTorch Sampler.
tqdm_loader = tqdm(
islice(dataloaders['train'], 0, batches_per_epoch),
total=batches_per_epoch)
else:
tqdm_loader = tqdm(dataloaders['train'])
for data in tqdm_loader:
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(True):
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
losses.update(loss.item(), inputs.size(0))
acc = torch.sum(preds == labels.data).item() / preds.shape[0]
accuracies.update(acc)
all_preds += list(F.softmax(outputs, dim=1)[:, 1].cpu().data.numpy())
all_labels += list(labels.cpu().data.numpy())
tqdm_loader.set_postfix(loss=losses.avg, acc=accuracies.avg)
auc = roc_auc_score(all_labels, all_preds)
return {'loss': losses.avg, 'auc': auc, 'acc': accuracies.avg}
def save_images(dataset, to, n=32):
for i in range(n):
img_path = os.path.join(to, 'img_{}.png'.format(i))
save_image(dataset[i][0], img_path)
@ex.automain
def main(train_root, train_csv, val_root, val_csv, test_root, test_csv,
epochs, aug, model_name, batch_size, num_workers, val_samples,
test_samples, early_stopping_patience, limit_data, images_per_epoch,
split_id, _run):
assert(model_name in ('inceptionv4', 'resnet152', 'densenet161',
'senet154', 'pnasnet5large', 'nasnetalarge',
'xception', 'squeezenet', 'resnext', 'dpn',
'inceptionresnetv2', 'mobilenetv2'))
cv2.setNumThreads(0)
AUGMENTED_IMAGES_DIR = os.path.join(fs_observer.dir, 'images')
CHECKPOINTS_DIR = os.path.join(fs_observer.dir, 'checkpoints')
BEST_MODEL_PATH = os.path.join(CHECKPOINTS_DIR, 'model_best.pth')
LAST_MODEL_PATH = os.path.join(CHECKPOINTS_DIR, 'model_last.pth')
RESULTS_CSV_PATH = os.path.join('results', 'results.csv')
EXP_NAME = _run.meta_info['options']['--name']
EXP_ID = _run._id
for directory in (AUGMENTED_IMAGES_DIR, CHECKPOINTS_DIR):
os.makedirs(directory)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if model_name == 'inceptionv4':
model = ptm.inceptionv4(num_classes=1000, pretrained='imagenet')
model.last_linear = nn.Linear(model.last_linear.in_features, 2)
aug['size'] = 299
aug['mean'] = model.mean
aug['std'] = model.std
elif model_name == 'resnet152':
model = models.resnet152(pretrained=True)
model.fc = nn.Linear(model.fc.in_features, 2)
aug['size'] = 224
aug['mean'] = [0.485, 0.456, 0.406]
aug['std'] = [0.229, 0.224, 0.225]
elif model_name == 'densenet161':
model = models.densenet161(pretrained=True)
model.classifier = nn.Linear(model.classifier.in_features, 2)
aug['size'] = 224
aug['mean'] = [0.485, 0.456, 0.406]
aug['std'] = [0.229, 0.224, 0.225]
elif model_name == 'senet154':
model = ptm.senet154(num_classes=1000, pretrained='imagenet')
model.last_linear = nn.Linear(model.last_linear.in_features, 2)
aug['size'] = model.input_size[1]
aug['mean'] = model.mean
aug['std'] = model.std
elif model_name == 'squeezenet':
model = ptm.squeezenet1_1(num_classes=1000, pretrained='imagenet')
model.last_conv = nn.Conv2d(
512, 2, kernel_size=(1, 1), stride=(1, 1))
aug['size'] = model.input_size[1]
aug['mean'] = model.mean
aug['std'] = model.std
elif model_name == 'pnasnet5large':
model = ptm.pnasnet5large(num_classes=1000, pretrained='imagenet')
model.last_linear = nn.Linear(model.last_linear.in_features, 2)
aug['size'] = model.input_size[1]
aug['mean'] = model.mean
aug['std'] = model.std
elif model_name == 'nasnetalarge':
model = ptm.nasnetalarge(num_classes=1000, pretrained='imagenet')
model.last_linear = nn.Linear(model.last_linear.in_features, 2)
aug['size'] = model.input_size[1]
aug['mean'] = model.mean
aug['std'] = model.std
elif model_name == 'xception':
model = ptm.xception(num_classes=1000, pretrained='imagenet')
model.last_linear = nn.Linear(model.last_linear.in_features, 2)
aug['size'] = model.input_size[1]
aug['mean'] = model.mean
aug['std'] = model.std
elif model_name == 'dpn':
model = ptm.dpn131(num_classes=1000, pretrained='imagenet')
model.last_linear = nn.Conv2d(model.last_linear.in_channels, 2,
kernel_size=1, bias=True)
aug['size'] = model.input_size[1]
aug['mean'] = model.mean
aug['std'] = model.std
elif model_name == 'resnext':
model = ptm.resnext101_64x4d(num_classes=1000, pretrained='imagenet')
model.last_linear = nn.Linear(model.last_linear.in_features, 2)
aug['size'] = model.input_size[1]
aug['mean'] = model.mean
aug['std'] = model.std
elif model_name == 'inceptionresnetv2':
model = ptm.inceptionresnetv2(num_classes=1000, pretrained='imagenet')
model.last_linear = nn.Linear(model.last_linear.in_features, 2)
aug['size'] = model.input_size[1]
aug['mean'] = model.mean
aug['std'] = model.std
elif model_name == 'mobilenetv2':
model = MobileNetV2()
model.load_state_dict(torch.load('./auglib/models/mobilenet_v2.pth'))
model.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(model.last_channel, 2),
)
aug['size'] = 224
aug['mean'] = [0.485, 0.456, 0.406]
aug['std'] = [0.229, 0.224, 0.225]
model.to(device)
augs = Augmentations(**aug)
model.aug_params = aug
datasets = {
'samples': CSVDataset(train_root, train_csv, 'image_id', 'melanoma',
transform=augs.tf_augment, add_extension='.jpg',
limit=(400, 433)),
'train': CSVDataset(train_root, train_csv, 'image_id', 'melanoma',
transform=augs.tf_transform, add_extension='.jpg',
random_subset_size=limit_data),
'val': CSVDatasetWithName(
val_root, val_csv, 'image_id', 'melanoma',
transform=augs.tf_transform, add_extension='.jpg'),
'test': CSVDatasetWithName(
test_root, test_csv, 'image_id', 'melanoma',
transform=augs.tf_transform, add_extension='.jpg'),
'test_no_aug': CSVDatasetWithName(
test_root, test_csv, 'image_id', 'melanoma',
transform=augs.no_augmentation, add_extension='.jpg'),
'test_144': CSVDatasetWithName(
test_root, test_csv, 'image_id', 'melanoma',
transform=augs.inception_crop, add_extension='.jpg'),
}
dataloaders = {
'train': DataLoader(datasets['train'], batch_size=batch_size,
shuffle=True, num_workers=num_workers,
worker_init_fn=set_seeds),
'samples': DataLoader(datasets['samples'], batch_size=batch_size,
shuffle=False, num_workers=num_workers,
worker_init_fn=set_seeds),
}
save_images(datasets['samples'], to=AUGMENTED_IMAGES_DIR, n=32)
sample_batch, _ = next(iter(dataloaders['samples']))
save_image(make_grid(sample_batch, padding=0),
os.path.join(AUGMENTED_IMAGES_DIR, 'grid.jpg'))
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),
lr=0.001,
momentum=0.9,
weight_decay=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.1,
min_lr=1e-5,
patience=8)
metrics = {
'train': pd.DataFrame(columns=['epoch', 'loss', 'acc', 'auc']),
'val': pd.DataFrame(columns=['epoch', 'loss', 'acc', 'auc'])
}
best_val_auc = 0.0
best_epoch = 0
epochs_without_improvement = 0
if images_per_epoch:
batches_per_epoch = images_per_epoch // batch_size
else:
batches_per_epoch = None
for epoch in range(epochs):
print('train epoch {}/{}'.format(epoch+1, epochs))
epoch_train_result = train_epoch(
device, model, dataloaders, criterion, optimizer,
batches_per_epoch)
metrics['train'] = metrics['train'].append(
{**epoch_train_result, 'epoch': epoch}, ignore_index=True)
print('train', epoch_train_result)
epoch_val_result, _ = test_with_augmentation(
model, datasets['val'], device, num_workers, val_samples)
metrics['val'] = metrics['val'].append(
{**epoch_val_result, 'epoch': epoch}, ignore_index=True)
print('val', epoch_val_result)
print('-' * 40)
scheduler.step(epoch_val_result['loss'])
if epoch_val_result['auc'] > best_val_auc:
best_val_auc = epoch_val_result['auc']
best_val_result = epoch_val_result
best_epoch = epoch
epochs_without_improvement = 0
torch.save(model, BEST_MODEL_PATH)
else:
epochs_without_improvement += 1
if epochs_without_improvement > early_stopping_patience:
last_val_result = epoch_val_result
torch.save(model, LAST_MODEL_PATH)
break
if epoch == (epochs-1):
last_val_result = epoch_val_result
torch.save(model, LAST_MODEL_PATH)
for phase in ['train', 'val']:
metrics[phase].epoch = metrics[phase].epoch.astype(int)
metrics[phase].to_csv(os.path.join(fs_observer.dir, phase + '.csv'),
index=False)
# Run testing
# TODO: reduce code repetition
test_result, preds = test_with_augmentation(
torch.load(BEST_MODEL_PATH), datasets['test'], device,
num_workers, test_samples)
print('[best] test', test_result)
test_noaug_result, preds_noaug = test_with_augmentation(
torch.load(BEST_MODEL_PATH), datasets['test_no_aug'], device,
num_workers, 1)
print('[best] test (no augmentation)', test_noaug_result)
test_result_last, preds_last = test_with_augmentation(
torch.load(LAST_MODEL_PATH), datasets['test'], device,
num_workers, test_samples)
print('[last] test', test_result_last)
test_noaug_result_last, preds_noaug_last = test_with_augmentation(
torch.load(LAST_MODEL_PATH), datasets['test_no_aug'], device,
num_workers, 1)
print('[last] test (no augmentation)', test_noaug_result_last)
# Save predictions
preds.to_csv(os.path.join(fs_observer.dir, 'test-aug-best.csv'),
index=False, columns=['image', 'label', 'score'])
preds_noaug.to_csv(os.path.join(fs_observer.dir, 'test-noaug-best.csv'),
index=False, columns=['image', 'label', 'score'])
preds_last.to_csv(os.path.join(fs_observer.dir, 'test-aug-last.csv'),
index=False, columns=['image', 'label', 'score'])
preds_noaug_last.to_csv(os.path.join(fs_observer.dir, 'test-noaug-last.csv'),
index=False, columns=['image', 'label', 'score'])
# TODO: Avoid repetition.
# use ordereddict, or create a pandas df before saving
with open(RESULTS_CSV_PATH, 'a') as file:
file.write(','.join((
EXP_NAME,
str(EXP_ID),
str(split_id),
str(best_epoch),
str(best_val_result['loss']),
str(best_val_result['acc']),
str(best_val_result['auc']),
str(best_val_result['avp']),
str(best_val_result['sens']),
str(best_val_result['spec']),
str(last_val_result['loss']),
str(last_val_result['acc']),
str(last_val_result['auc']),
str(last_val_result['avp']),
str(last_val_result['sens']),
str(last_val_result['spec']),
str(best_val_auc),
str(test_result['auc']),
str(test_result_last['auc']),
str(test_result['acc']),
str(test_result_last['acc']),
str(test_result['spec']),
str(test_result_last['spec']),
str(test_result['sens']),
str(test_result_last['sens']),
str(test_result['avp']),
str(test_result_last['avp']),
str(test_noaug_result['auc']),
str(test_noaug_result_last['auc']),
str(test_noaug_result['acc']),
str(test_noaug_result_last['acc']),
str(test_noaug_result['spec']),
str(test_noaug_result_last['spec']),
str(test_noaug_result['sens']),
str(test_noaug_result_last['sens']),
str(test_noaug_result['avp']),
str(test_noaug_result_last['avp']),
)) + '\n')
return (test_noaug_result['auc'],
test_result['auc'],
)