-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotting.py
162 lines (131 loc) · 5.53 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from scipy.sparse import csc_matrix,csr_matrix,coo_matrix
from scipy.sparse.linalg import lsqr
from numpy import linalg as LA
import datetime
import csv
import numpy as np
import os
import matplotlib.pyplot as plt
dir_path = os.path.dirname(os.path.realpath(__file__))
import time
import pandas as pd
from os import listdir
from os.path import isfile, join
from os import walk
########################
### Plotting results ###
########################
# LSQR-CUDA data
outpath = "./output/"
outputspath = "../results/2021109/output"
now = datetime.datetime.now()
now = now.strftime('%Y-%m-%dT%H%M')
inpath = "../results/2021109/input"
inputs = listdir(inpath)
inputs.sort()
mats = [m for m in inputs if ".mat" in m]
vecs = [v for v in inputs if ".vec" in v]
# Sparse plotting
LSQRCUDA = pd.read_csv(outputspath+"/2021-11-09T2101_LSQR-CUDA.csv")
DEVICE = pd.read_csv(outputspath+"/deviceProps.csv")
# python data
scipylsqr = pd.read_csv(outpath + "/2021-11-10T0956_LSQR_python.csv")
# Load and parse LSQR-CUDA data
name = DEVICE['DEVICE_NAME'][0]
implementations = ['Cpp-DENSE','CUDA-DENSE','CUDA-SPARSE','CUBLAS-DENSE','CUSPARSE-SPARSE']
dfs = []
for i in implementations:
temp = LSQRCUDA[LSQRCUDA['IMPLEMENTATION']==i].drop(columns='IMPLEMENTATION').drop(columns='A_COLUMNS').drop(columns='SPARSITY')
temp = temp.rename(columns={"TIME(ms)":i})
temp[i] = temp[i].mul(1/1000)
dfs.append(temp)
BASELINE = scipylsqr[scipylsqr['IMPLEMENTATION']=='scipy-lsqr'].drop(columns='IMPLEMENTATION').drop(columns='A_COLUMNS').drop(columns='SPARSITY')
BASELINE = BASELINE.rename(columns={"TIME(ms)":"scipy-lsqr"})
BASELINE["scipy-lsqr"] = BASELINE["scipy-lsqr"].mul(1/1000)
CPPDENSE = dfs[0]
CUDADENSE = dfs[1]
CUDASPARSE = dfs[2]
CUBLASDENSE = dfs[3]
CUSPARSE = dfs[4]
all = pd.merge(CUBLASDENSE,CUSPARSE,on="A_ROWS")
all = pd.merge(CUDASPARSE,all,on="A_ROWS")
all = pd.merge(CUDADENSE,all,on="A_ROWS")
all = pd.merge(CPPDENSE,all,how='right',on="A_ROWS")
all = pd.merge(BASELINE,all,how='right',on="A_ROWS")
#all.to_csv("../results/"+now+"_RUNTIMES.csv",index=False,float_format='%.5f')
# Sparse implementation plots
sparse = pd.merge(CUSPARSE,CUDASPARSE,on="A_ROWS")
sparse = pd.merge(BASELINE,sparse,on="A_ROWS")
fig = sparse.plot(x='A_ROWS', xlabel="# of Rows in Square Matrix A", ylabel="RUNTIME (s)",title=name+" - Sparse Inputs",grid=True).get_figure()
#fig.savefig("../results/"+now+"_1000-8000_SPARSE-INPUTS.png")
#csvtimes = "../results/"+now+"_SPARSETIMES.csv"
#sparse.to_csv(csvtimes,index=False,float_format='%.8f')
# Sparse speedups
CUDASPARSE_SPEEDUP = (sparse["scipy-lsqr"]/sparse["CUDA-SPARSE"])
CUDASPARSE_SPEEDUP = CUDASPARSE_SPEEDUP.rename("CUDA-SPARSE")
CUSPARSE_SPEEDUP = (sparse["scipy-lsqr"]/sparse["CUSPARSE-SPARSE"])
CUSPARSE_SPEEDUP = CUSPARSE_SPEEDUP.rename("CUSPARSE-SPARSE")
ROWS_SPEEDUP = sparse["A_ROWS"]
ROWS_SPEEDUP = ROWS_SPEEDUP.rename("A_ROWS")
csvsparsespeedups = "../results/"+now+"_SPARSE-SPEEDUPS.csv"
SPEEDUPS = pd.concat([ROWS_SPEEDUP,CUDASPARSE_SPEEDUP,CUSPARSE_SPEEDUP], axis=1)
#SPEEDUPS.to_csv(csvsparsespeedups,index=False,float_format='%.8f')
## Dense implementation plots
dense = pd.merge(CUDADENSE,CUBLASDENSE,on="A_ROWS")
dense = pd.merge(CPPDENSE,dense,on="A_ROWS")
fig = dense.plot(x='A_ROWS', xlabel="# of Rows in Square Matrix A", ylabel="RUNTIME (s)",title=name+" - Dense Inputs",grid=True).get_figure()
#fig.savefig("../results/"+now+"_1000-8000_DENSE-INPUTS.png")
#####################################################
### Calculation of root mean squared error (rmse) ###
#####################################################
# Baseline data
PYTHONOUTS = []
for (dirpath, dirnames, filenames) in walk(outpath):
PYTHONOUTS.extend(filenames)
break
PYTHONOUTS.sort()
PYTHONOUTS = [v for v in PYTHONOUTS if ".vec" in v]
LSQROUTS = []
for (dirpath, dirnames, filenames) in walk(outputspath):
LSQROUTS.extend(filenames)
break
LSQROUTS.sort()
LSQROUTS = [v for v in LSQROUTS if ".vec" in v]
csvrsmepath = "../results/" + now + "_RMSE.csv"
f = open(csvrsmepath, 'w')
writer = csv.writer(f)
writer.writerow(['IMPLEMENTATION','A_ROWS','RMSE'])
f.close()
maxRmse=0
for pyout in PYTHONOUTS:
rows = int(float(pyout.split("_")[0]))
rowsStr = str(rows)
outs = [v for v in LSQROUTS if rowsStr in v]
p = np.loadtxt(outpath+"/"+pyout,dtype=np.double)
for o in outs:
l = np.loadtxt(outputspath+"/"+o,dtype=np.double)
rmse = np.sqrt(np.mean((l-p)**2))
if (rmse>maxRmse):
maxRmse=rmse
# write to csv
implementation = o.split(".")[0].split("_")[3]
rowrsmecsv = [implementation,rowsStr,f'{rmse:.8f}']
with open(csvrsmepath, 'a') as fd:
writer=csv.writer(fd)
writer.writerow(rowrsmecsv)
errors = pd.read_csv(csvrsmepath)
I0 = errors[errors['IMPLEMENTATION']=='Cpp-DENSE'].drop(columns='IMPLEMENTATION')
I0=I0.rename(columns={"RMSE":"Cpp-DENSE"})
I1 = errors[errors['IMPLEMENTATION']=='CUDA-DENSE'].drop(columns='IMPLEMENTATION')
I1=I1.rename(columns={"RMSE":"CUDA-DENSE"})
I2 = errors[errors['IMPLEMENTATION']=='CUDA-SPARSE-80'].drop(columns='IMPLEMENTATION')
I2=I2.rename(columns={"RMSE":"CUDA-SPARSE"})
I3 = errors[errors['IMPLEMENTATION']=='CUBLAS-DENSE'].drop(columns='IMPLEMENTATION')
I3=I3.rename(columns={"RMSE":"CUBLAS-DENSE"})
I4 = errors[errors['IMPLEMENTATION']=='CUSPARSE-SPARSE-80'].drop(columns='IMPLEMENTATION')
I4=I4.rename(columns={"RMSE":"CUSPARSE-SPARSE"})
I = pd.merge(I3,I4,on="A_ROWS")
I = pd.merge(I2,I,on="A_ROWS")
I = pd.merge(I1,I,on="A_ROWS")
I = pd.merge(I0,I,how='right',on="A_ROWS")
#I.to_csv(csvrsmepath,index=False,float_format='%.5f')