-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_descriptive_statistics.py
executable file
·195 lines (135 loc) · 8.92 KB
/
compute_descriptive_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import collections
import statistics
from math import sqrt
import numpy
import pandas as pd
from sklearn.neighbors import KernelDensity
import global_variables as gv
id_data_type__categorical = "string"
id_data_type__numerical = "number"
id_data_type__date = "date"
def get_descriptive_statistics_deviations(current_descriptive_statistics, descriptive_statistics_whole_data):
current_descriptive_statistics.coefficient_of_unalikeability_deviation = current_descriptive_statistics.coefficient_of_unalikeability - descriptive_statistics_whole_data.coefficient_of_unalikeability
current_descriptive_statistics.stDev_deviation = current_descriptive_statistics.stDev - descriptive_statistics_whole_data.stDev
current_descriptive_statistics.varNC_deviation = current_descriptive_statistics.varNC - descriptive_statistics_whole_data.varNC
current_descriptive_statistics.number_of_modes_deviation = current_descriptive_statistics.number_of_modes - descriptive_statistics_whole_data.number_of_modes
current_descriptive_statistics.missing_values_percentage_deviation = current_descriptive_statistics.missing_values_percentage - descriptive_statistics_whole_data.missing_values_percentage
current_descriptive_statistics.overall_deviation = (abs(
current_descriptive_statistics.coefficient_of_unalikeability_deviation) + abs(
current_descriptive_statistics.stDev_deviation) + abs(
current_descriptive_statistics.missing_values_percentage_deviation)) / 3
return current_descriptive_statistics
def compute_stdev(column_values_stdev_varnc, data_type):
if data_type == id_data_type__categorical:
relative_frequencies = [number / gv.initial_length_of_data_rows for number in
list(collections.Counter(column_values_stdev_varnc).values())]
# fm = numpy.amax(relative_frequencies)
n_total_size = sum(relative_frequencies)
k = len(relative_frequencies)
# check if k is smaller 2, if so return 0,0 because division by 0 is not allowed
if k < 2:
return 0, 0
sum_distances_stdev = 0
sum_value_varnc = sum(
[(cat_frequ - n_total_size / k) * (cat_frequ - n_total_size / k) for cat_frequ in relative_frequencies])
varnc = (sum_value_varnc / (((n_total_size * n_total_size) * (k - 1)) / k))
# sum_value_iqv = sum([cat_frequ * cat_frequ for cat_frequ in relative_frequencies])
# sum_value_h_star = sum([cat_frequ * log(cat_frequ) for cat_frequ in relative_frequencies])
for i in range(len(relative_frequencies) - 1):
current_frequ = relative_frequencies[i]
sum_distances_stdev += sum([(current_frequ - cat_frequ) * (current_frequ - cat_frequ) for cat_frequ in
relative_frequencies[i + 1:]])
stdev = sqrt(sum_distances_stdev / (n_total_size * n_total_size * (k - 1)))
else:
not_nan_values = [x for x in column_values_stdev_varnc if str(x) != 'nan']
stdev = statistics.stdev(not_nan_values)
varnc = statistics.variance(not_nan_values)
return stdev, varnc
class CategoriesObject(object):
def __init__(self, unique_value, relative_frequency, count):
self.unique_value = unique_value
self.relativeFrequency = relative_frequency
self.count = count
def get_categories(column_values):
counter_elements = collections.Counter(column_values)
categories_list = []
# for count_el in range(len(collections.Counter(column_values))):
for count_el in counter_elements:
if str(count_el) != 'nan':
categories_list.append(
CategoriesObject(str(count_el), counter_elements[count_el] / gv.initial_length_of_data_rows,
counter_elements[count_el]))
return categories_list
def compute_coefficient_of_unalikeability(column_values_coeff_unalikeability, data_type, column_id):
epsilon_percent_for_coefficient_of_unalikeability = 5
sum_unalike = 0
if data_type == id_data_type__categorical:
counter = collections.Counter(column_values_coeff_unalikeability)
for count in counter.values():
sum_unalike += count * (len(column_values_coeff_unalikeability) - count) # (gv.initial_length_of_data_rows - count)
else:
column_values_coeff_unalikeability = pd.Series(column_values_coeff_unalikeability)
column_values_coeff_unalikeability = column_values_coeff_unalikeability.rename(column_id)
original_column_values = column_values_coeff_unalikeability
if len([x for x in gv.data_initially_formatted if x.id == column_id]) > 0:
original_column_values = pd.Series([x for x in gv.data_initially_formatted if x.id == column_id][0].column_values)
original_column_values = original_column_values.rename(column_id)
# due to normalization, we have fixed min and max values
min_value = 0 # numpy.amin(original_column_values)
max_value = 1 # numpy.amax(original_column_values)
epsilon = (max_value - min_value) / 100 * epsilon_percent_for_coefficient_of_unalikeability
length_available_data = len(column_values_coeff_unalikeability) # gv.initial_length_of_data_rows
# very low on performance, not the best implementation
# better: group the values
# for i in column_values:
# if ~numpy.isnan(i):
#
# sum_unalike += + len(list(x for x in sorted(column_values) if (i - epsilon) <= x <= (i + epsilon)))
# else:
# length_available_data -= 1
#
# sum_unalike += length_available_data * (column_values_length - length_available_data)
if numpy.isnan(min_value):
sum_unalike += length_available_data * (len(column_values_coeff_unalikeability) - length_available_data) # (gv.initial_length_of_data_rows - length_available_data)
elif min_value == max_value:
counter = collections.Counter(column_values_coeff_unalikeability)
sum_unalike += counter[min_value] * (len(column_values_coeff_unalikeability) - counter[min_value])
sum_unalike += (len(column_values_coeff_unalikeability) - counter[min_value]) * (len(column_values_coeff_unalikeability) -
(len(column_values_coeff_unalikeability) -
counter[
min_value]))
else:
grouped_values = column_values_coeff_unalikeability.groupby(pd.cut(column_values_coeff_unalikeability, numpy.arange(min_value,
max_value,
epsilon))).count().to_frame()
for count in grouped_values[column_values_coeff_unalikeability.name]:
if count > 0:
length_available_data -= count
sum_unalike += count * (len(column_values_coeff_unalikeability) - count)
sum_unalike += length_available_data * (len(column_values_coeff_unalikeability) - length_available_data)
sum_unalike = sum_unalike / (len(column_values_coeff_unalikeability) * len(column_values_coeff_unalikeability))
return sum_unalike
def get_number_of_modes(current_col, data_type):
cleaned_list = [x for x in current_col if (str(x) != 'nan' and str(x) != "None")]
if len(cleaned_list) == 0:
return 0
elif data_type == id_data_type__categorical:
threshold = 0.10
relative_frequencies = [number / gv.initial_length_of_data_rows for number in
list(collections.Counter(cleaned_list).values())]
max_mode_freque = numpy.amax(relative_frequencies)
# j2 = [i for i in relative_frequencies if i >= max_mode_freque - max_mode_freque * threshold]
return len([i for i in relative_frequencies if i >= max_mode_freque - max_mode_freque * threshold])
else:
if numpy.amin(cleaned_list) == numpy.amax(cleaned_list):
return 1
else:
bandwidths = list(numpy.histogram(cleaned_list, 'fd'))
best_bandwidth = (bandwidths[1][1] - bandwidths[1][0])
# kde = stats.gaussian_kde(cleaned_list, best_bandwidth)
a = numpy.asarray([i * 100 for i in cleaned_list]).reshape(-1, 1) #
kde_sklearn = KernelDensity(kernel='gaussian', bandwidth=best_bandwidth).fit(a)
s = numpy.linspace(0,50)
e = kde_sklearn.score_samples(s.reshape(-1, 1))
maxima = numpy.count_nonzero(numpy.r_[True, e[1:] > e[:-1]] & numpy.r_[e[:-1] > e[1:], True])
return int(maxima) # len(argrelextrema(kde(bandwidths[1]), numpy.greater)[0])