-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutil_us.py
886 lines (712 loc) · 27.3 KB
/
util_us.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
import torch
import math
from PIL import Image
import os
import time
from torchvision import transforms, datasets
import numpy as np
import torch.nn.functional as F
from defense.ueraser import UEraser
from defense.diffusion import diffpure
import torch.nn as nn
from nets.resnet_us import model_dict, LinearClassifier
import kornia.augmentation as K
class I_CIFAR10(datasets.CIFAR10):
def __getitem__(self, index):
img, target = self.data[index], self.targets[index]
img = Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
class I_CIFAR100(datasets.CIFAR100):
def __getitem__(self, index):
img, target = self.data[index], self.targets[index]
img = Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
class DatasetPoisoning(object):
def __init__(self, delta_weight, delta, args):
self.delta_weight = delta_weight
self.delta = delta
self.args = args
def __call__(self, img, target, index):
img = torch.clamp(
img + self.delta_weight * torch.clamp(self.delta[index], min=-1.0, max=1.0),
min=0.0,
max=1.0,
)
return img
def __repr__(self):
return "Adding pretrained noise to dataset (using poisoned dataset) when re-training"
class Defense(object):
def __init__(self, transform):
self.transform = transform
def __call__(self, img, target, index):
img = self.transform(img)
img = img.squeeze(0)
return img
def ueraser_transform(imgs):
imgs = UEraser(imgs)
return imgs
def pure_transform(imgs):
imgs = diffpure(imgs)
return imgs
class SeparateTransform:
def __init__(self, transform):
self.transform = transform
def __call__(self, img, target, index):
for t in self.transform:
img = t(img)
return img
class NormalTransform:
def __init__(self, transform):
self.transform = transform
def __call__(self, img, target, index):
for t in self.transform:
if isinstance(t, DatasetPoisoning) or isinstance(t, Defense):
img = t(img, target, index)
else:
img = t(img)
return img
def patch_noise_extend_to_img(noise, image_size=[32, 32, 3], patch_location="center"):
h, w, c = image_size[0], image_size[1], image_size[2]
mask = np.zeros((h, w, c), np.float32)
x_len, y_len = noise.shape[0], noise.shape[1]
if patch_location == "center" or (h == w == x_len == y_len):
x = h // 2
y = w // 2
elif patch_location == "random":
x = np.random.randint(x_len // 2, w - x_len // 2)
y = np.random.randint(y_len // 2, h - y_len // 2)
else:
raise ("Invalid patch location")
x1 = np.clip(x - x_len // 2, 0, h)
x2 = np.clip(x + x_len // 2, 0, h)
y1 = np.clip(y - y_len // 2, 0, w)
y2 = np.clip(y + y_len // 2, 0, w)
mask[x1:x2, y1:y2, :] = noise
return mask
class TransferCIFAR10Pair(datasets.CIFAR10):
def __init__(
self,
root="data",
train=True,
pre_transform=None,
transform=None,
download=True,
perturb_tensor_filepath=None,
perturbation_budget=1.0,
samplewise_perturb: bool = False,
flag_save_img_group: bool = False,
perturb_rate: float = 1.0,
clean_train=False,
in_tuple=False,
flag_perturbation_budget=False,
):
super(TransferCIFAR10Pair, self).__init__(
root=root, train=train, download=download, transform=transform
)
self.samplewise_perturb = samplewise_perturb
self.pre_transform = pre_transform
self.in_tuple = in_tuple
if perturb_tensor_filepath != None:
self.perturb_tensor = torch.load(perturb_tensor_filepath)
if flag_perturbation_budget:
self.noise_255 = (
self.perturb_tensor.mul(255 * perturbation_budget)
.clamp_(-255 * perturbation_budget, 255 * perturbation_budget)
.permute(0, 2, 3, 1)
.to("cpu")
.numpy()
)
else:
self.noise_255 = (
self.perturb_tensor.mul(255 * perturbation_budget)
.clamp_(-9, 9)
.permute(0, 2, 3, 1)
.to("cpu")
.numpy()
)
else:
self.perturb_tensor = None
return
self.perturbation_budget = perturbation_budget
if not clean_train:
if not flag_save_img_group:
perturb_rate_index = np.random.choice(
len(self.targets),
int(len(self.targets) * perturb_rate),
replace=False,
)
self.data = self.data.astype(np.float32)
for idx in range(len(self.data)):
if idx not in perturb_rate_index:
continue
if not samplewise_perturb:
# raise('class_wise still under development')
noise = self.noise_255[self.targets[idx]]
else:
noise = self.noise_255[idx]
# print("check it goes samplewise.")
noise = patch_noise_extend_to_img(
noise, [32, 32, 3], patch_location="center"
)
self.data[idx] = self.data[idx] + noise
self.data[idx] = np.clip(self.data[idx], a_min=0, a_max=255)
self.data = self.data.astype(np.uint8)
print("Load perturb done.")
else:
print("it is clean train")
def __getitem__(self, index):
img, target = self.data[index], self.targets[index]
img = Image.fromarray(img)
if self.pre_transform is not None:
nor_transform = NormalTransform(self.pre_transform)
img = nor_transform(img, target, index)
if self.transform is not None:
sep_transform = SeparateTransform(self.transform)
img = [sep_transform(img, target, index), sep_transform(img, target, index)]
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
class TransferCIFAR100Pair(datasets.CIFAR100):
def __init__(
self,
root="data",
train=True,
pre_transform=None,
transform=None,
download=True,
perturb_tensor_filepath=None,
perturbation_budget=1.0,
samplewise_perturb: bool = True,
flag_save_img_group: bool = False,
perturb_rate: float = 1.0,
clean_train=False,
in_tuple=False,
flag_perturbation_budget=False,
args=None,
):
super(TransferCIFAR100Pair, self).__init__(
root=root, train=train, download=download, transform=transform
)
self.samplewise_perturb = samplewise_perturb
self.pre_transform = pre_transform
self.in_tuple = in_tuple
self.args = args
if perturb_tensor_filepath != None:
self.perturb_tensor = torch.load(perturb_tensor_filepath)
if flag_perturbation_budget:
self.noise_255 = (
self.perturb_tensor.mul(255 * perturbation_budget)
.clamp_(-255 * perturbation_budget, 255 * perturbation_budget)
.permute(0, 2, 3, 1)
.to("cpu")
.numpy()
)
else:
self.noise_255 = (
self.perturb_tensor.mul(255 * perturbation_budget)
.clamp_(-9, 9)
.permute(0, 2, 3, 1)
.to("cpu")
.numpy()
)
else:
self.perturb_tensor = None
return
self.perturbation_budget = perturbation_budget
if not clean_train:
if not flag_save_img_group:
perturb_rate_index = np.random.choice(
len(self.targets),
int(len(self.targets) * perturb_rate),
replace=False,
)
self.data = self.data.astype(np.float32)
for idx in range(len(self.data)):
if idx not in perturb_rate_index:
continue
if not samplewise_perturb:
noise = self.noise_255[self.targets[idx]]
else:
noise = self.noise_255[idx]
self.data[idx] = self.data[idx] + noise
self.data[idx] = np.clip(self.data[idx], a_min=0, a_max=255)
self.data = self.data.astype(np.uint8)
print("Load perturb done.")
else:
print("it is clean train")
def __getitem__(self, index):
img, target = self.data[index], self.targets[index]
img = Image.fromarray(img)
if self.pre_transform is not None:
nor_transform = NormalTransform(self.pre_transform)
img = nor_transform(img, target, index)
if self.transform is not None:
sep_transform = SeparateTransform(self.transform)
img = [sep_transform(img, target, index), sep_transform(img, target, index)]
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
class P_CIFAR10_TwoCropTransform(datasets.CIFAR10):
def __init__(
self, root="data", train=True, pre_transform=None, transform=None, download=True
):
super(P_CIFAR10_TwoCropTransform, self).__init__(
root=root, train=train, download=download, transform=transform
)
self.pre_transform = pre_transform
self.transform = transform
def __getitem__(self, index):
img, target = self.data[index], self.targets[index]
img = Image.fromarray(img)
if self.pre_transform is not None:
nor_transform = NormalTransform(self.pre_transform)
img = nor_transform(img, target, index)
if self.transform is not None:
sep_transform = SeparateTransform(self.transform)
img = [sep_transform(img, target, index), sep_transform(img, target, index)]
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
class P_CIFAR100_TwoCropTransform(datasets.CIFAR100):
def __init__(
self,
root="data",
train=True,
pre_transform=None,
transform=None,
download=True,
):
super(P_CIFAR100_TwoCropTransform, self).__init__(
root=root, train=train, download=download, transform=transform
)
self.pre_transform = pre_transform
self.transform = transform
def __getitem__(self, index):
img, target = self.data[index], self.targets[index]
img = Image.fromarray(img)
if self.pre_transform is not None:
nor_transform = NormalTransform(self.pre_transform)
img = nor_transform(img, target, index)
if self.transform is not None:
sep_transform = SeparateTransform(self.transform)
img = [sep_transform(img, target, index), sep_transform(img, target, index)]
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
class TwoCropTransform:
"""Create two crops of the same image"""
def __init__(self, transform):
self.transform = transform
def __call__(self, x):
return [self.transform(x), self.transform(x)]
def set_optimizer(args, model):
optimizer = torch.optim.SGD(
model.parameters(),
lr=args.lr,
momentum=0.9,
weight_decay=0,
)
return optimizer
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class GatherLayer(torch.autograd.Function):
"""
Gather tensors from all process, supporting backward propagation.
"""
@staticmethod
def forward(ctx, input):
ctx.save_for_backward(input)
output = [torch.zeros_like(input) for _ in range(1)]
return tuple(output)
@staticmethod
def backward(ctx, *grads):
(input,) = ctx.saved_tensors
grad_out = torch.zeros_like(input)
return grad_out
class ResNetWithHead(nn.Module):
"""backbone + projection head"""
def __init__(self, arch="resnet18", head="mlp", feat_dim=128):
super(ResNetWithHead, self).__init__()
model_fun, dim_in = model_dict[arch]
self.encoder = model_fun()
if head == "linear":
self.head = nn.Linear(dim_in, feat_dim)
elif head == "mlp":
self.head = nn.Sequential(
nn.Linear(dim_in, dim_in),
nn.ReLU(inplace=True),
nn.Linear(dim_in, feat_dim),
)
else:
raise NotImplementedError("head not supported: {}".format(head))
def forward(self, x):
feat = self.encoder(x)
feat = F.normalize(self.head(feat), dim=1)
return feat
class MoCo(nn.Module):
def __init__(
self,
base_encoder,
arch="resnet18",
dim=128,
K=65536,
m=0.999,
T=0.07,
mlp=False,
allow_mmt_grad=False,
):
super(MoCo, self).__init__()
self.K = K
self.m = m
self.T = T
self.allow_mmt_grad = allow_mmt_grad
self.encoder_q = base_encoder(
arch=arch, head="mlp" if mlp else "linear", feat_dim=dim
)
self.encoder_k = base_encoder(
arch=arch, head="mlp" if mlp else "linear", feat_dim=dim
)
for param_q, param_k in zip(
self.encoder_q.parameters(), self.encoder_k.parameters()
):
param_k.data.copy_(param_q.data) # initialize
param_k.requires_grad = False # not update by gradient
# create the queue
self.register_buffer("queue", torch.randn(dim, K))
self.queue = nn.functional.normalize(self.queue, dim=0)
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
@torch.no_grad()
def _momentum_update_key_encoder(self):
"""
Momentum update of the key encoder
"""
for param_q, param_k in zip(
self.encoder_q.parameters(), self.encoder_k.parameters()
):
param_k.data = param_k.data * self.m + param_q.data * (1.0 - self.m)
@torch.no_grad()
def _dequeue_and_enqueue(self, keys):
# gather keys before updating queue
batch_size = keys.shape[0]
ptr = int(self.queue_ptr)
assert self.K % batch_size == 0 # for simplicity
# replace the keys at ptr (dequeue and enqueue)
self.queue[:, ptr : ptr + batch_size] = keys.T
ptr = (ptr + batch_size) % self.K # move pointer
self.queue_ptr[0] = ptr
def forward(self, im_q, im_k):
"""
Input:
im_q: a batch of query images
im_k: a batch of key images
Output:
logits, targets
"""
# compute query features
q = self.encoder_q(im_q) # queries: NxC
# compute key features
with torch.set_grad_enabled(self.allow_mmt_grad): # no gradient to keys
self._momentum_update_key_encoder() # update the key encoder
k = self.encoder_k(im_k) # keys: NxC
# compute logits
# Einstein sum is more intuitive
# positive logits: Nx1
l_pos = torch.einsum("nc,nc->n", [q, k]).unsqueeze(-1)
# negative logits: NxK
l_neg = torch.einsum("nc,ck->nk", [q, self.queue.clone().detach()])
# logits: Nx(1+K)
logits = torch.cat([l_pos, l_neg], dim=1)
# dequeue and enqueue
self._dequeue_and_enqueue(k if not self.allow_mmt_grad else k.clone().detach())
return logits
class CLmodel(nn.Module):
def __init__(self, arch, dataset, args):
super(CLmodel, self).__init__()
self.arch = arch
self.dataset = dataset
self.args = args
if args.arch == "simclr":
self.backbone = ResNetWithHead(arch="resnet18")
elif args.arch == "moco":
self.backbone = MoCo(
ResNetWithHead,
arch="resnet18",
dim=128,
K=4096,
m=0.99,
T=0.2,
mlp=True,
allow_mmt_grad=False,
)
else:
raise ValueError(args.arch)
self.transform = nn.Sequential(
K.RandomResizedCrop(size=(32, 32), scale=(0.2, 1.0)),
K.RandomHorizontalFlip(),
K.ColorJitter(0.4, 0.4, 0.4, 0.1, p=0.8),
K.RandomGrayscale(p=0.2),
)
def forward(self, img, index, labels=None):
mixed_img = img
bsz = img.shape[0] // 2
# data augmentation
aug1, aug2 = torch.split(mixed_img, [bsz, bsz], dim=0)
aug = torch.cat([aug1, aug2], dim=0)
out_dict = {}
if self.args.arch == "simclr":
features = self.backbone(aug)
f1, f2 = torch.split(features, [bsz, bsz], dim=0)
features = torch.cat([f1.unsqueeze(1), f2.unsqueeze(1)], dim=1)
out_dict["features"] = features
elif self.args.arch == "moco":
moco_logits = self.backbone(im_q=aug1, im_k=aug2.detach())
out_dict["moco_logits"] = moco_logits
else:
raise ValueError(self.args.arch)
return out_dict
class SimCLRLoss(nn.Module):
def __init__(self, temperature=0.07, contrast_mode="all", base_temperature=0.07):
super(SimCLRLoss, self).__init__()
self.temperature = temperature
self.contrast_mode = contrast_mode
self.base_temperature = base_temperature
def forward(self, features, labels=None, mask=None):
device = torch.device("cuda") if features.is_cuda else torch.device("cpu")
if len(features.shape) < 3:
raise ValueError(
"`features` needs to be [bsz, n_views, ...],"
"at least 3 dimensions are required"
)
if len(features.shape) > 3:
features = features.view(features.shape[0], features.shape[1], -1)
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError("Cannot define both `labels` and `mask`")
elif labels is None and mask is None:
mask = torch.eye(batch_size, dtype=torch.float32).to(device)
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError("Num of labels does not match num of features")
mask = torch.eq(labels, labels.T).float().to(device)
else:
mask = mask.float().to(device)
contrast_count = features.shape[1]
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
if self.contrast_mode == "one":
anchor_feature = features[:, 0]
anchor_count = 1
elif self.contrast_mode == "all":
anchor_feature = contrast_feature
anchor_count = contrast_count
else:
raise ValueError("Unknown mode: {}".format(self.contrast_mode))
# compute logits
anchor_dot_contrast = torch.div(
torch.matmul(anchor_feature, contrast_feature.T), self.temperature
)
# for numerical stability
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
# tile mask
mask = mask.repeat(anchor_count, contrast_count)
# mask-out self-contrast cases
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
0,
)
mask = mask * logits_mask
# compute log_prob
exp_logits = torch.exp(logits) * logits_mask
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
# compute mean of log-likelihood over positive
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
# loss
loss = -(self.temperature / self.base_temperature) * mean_log_prob_pos
loss = loss.view(anchor_count, batch_size).mean()
return loss
class MoCoLoss(nn.Module):
def __init__(self, temperature=0.07, base_temperature=0.07):
super(MoCoLoss, self).__init__()
self.temperature = temperature
self.base_temperature = base_temperature
def forward(self, logits, labels=None, queue_labels=None):
"""
logits: Nx(1+K)
labels: N,
queue_labels: K,
"""
device = torch.device("cuda") if logits.is_cuda else torch.device("cpu")
# CL loss
bsz = logits.shape[0]
if labels is None and queue_labels is None:
mask = torch.zeros_like(logits)
mask[:, 0] = 1.0
else:
labels = labels.contiguous().view(-1, 1)
queue_labels = queue_labels.contiguous().view(-1, 1)
mask = torch.eq(labels, queue_labels.T).float().to(device) # NxK
mask = torch.cat([torch.ones(bsz, 1).to(device), mask], dim=1) # Nx(K+1)
logits /= self.temperature
logits_max, _ = torch.max(logits, dim=1, keepdim=True)
logits = logits - logits_max.detach()
# compute log_prob
exp_logits = torch.exp(logits)
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
# compute mean of log-likelihood over positive
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
# loss
loss = -(self.temperature / self.base_temperature) * mean_log_prob_pos
loss = loss.mean()
return loss
def adjust_lr(args, optimizer, epoch):
lr = args.lr
eta_min = lr * (args.lr_decay_rate**3)
lr = eta_min + (lr - eta_min) * (1 + math.cos(math.pi * epoch / args.epochs)) / 2
for param_group in optimizer.param_groups:
param_group["lr"] = lr
def train_linear(train_loader, model, classifier, criterion, optimizer, epoch, args):
# training linear classifier
model.eval()
classifier.train()
losses = AverageMeter()
top1 = AverageMeter()
for idx, (images, labels) in enumerate(train_loader):
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
bsz = labels.shape[0]
with torch.no_grad():
features = model.encoder(images)
output = classifier(features.detach())
loss = criterion(output, labels)
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
# update metric
losses.update(loss.item(), bsz)
top1.update(acc1, bsz)
# SGD
optimizer.zero_grad()
loss.backward()
optimizer.step()
return losses.avg, top1.avg
def validate_linear(val_loader, model, classifier, criterion, args):
# validating linear classifier
model.eval()
classifier.eval()
losses = AverageMeter()
top1 = AverageMeter()
with torch.no_grad():
for idx, (images, labels) in enumerate(val_loader):
images = images.float().cuda()
labels = labels.cuda()
bsz = labels.shape[0]
# forward
output = classifier(model.encoder(images))
loss = criterion(output, labels)
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
# update metric
losses.update(loss.item(), bsz)
top1.update(acc1.item(), bsz)
return losses.avg, top1.avg
def train_val_linear(model, device, args):
# linear probing
train_transform = transforms.Compose(
[
transforms.RandomResizedCrop(size=32, scale=(0.2, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]
)
val_transform = transforms.ToTensor()
best_acc = 0
epochs = 100
if args.dataset == "c10":
train_dataset = datasets.CIFAR10(
root="dataset/cifar10/", transform=train_transform, download=True
)
val_dataset = datasets.CIFAR10(
root="dataset/cifar10/", train=False, transform=val_transform
)
num_classes = 10
else:
train_dataset = datasets.CIFAR100(
root="dataset/cifar100/", transform=train_transform, download=True
)
val_dataset = datasets.CIFAR100(
root="dataset/cifar100/", train=False, transform=val_transform
)
num_classes = 100
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=128, num_workers=4, pin_memory=True
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=128, num_workers=4, pin_memory=True
)
classifier = LinearClassifier(arch="resnet18", num_classes=num_classes)
linear_criterion = torch.nn.CrossEntropyLoss()
classifier = classifier.to(device)
linear_optimizer = set_optimizer(args=args, model=classifier)
# training routine
for epoch in range(1, epochs + 1):
adjust_lr(args, linear_optimizer, epoch)
# train for one epoch
time1 = time.time()
loss, acc = train_linear(
train_loader,
model,
classifier,
linear_criterion,
linear_optimizer,
epoch,
args,
)
# eval for one epoch
val_loss, val_acc = validate_linear(
val_loader, model, classifier, linear_criterion, args
)
print(f"Train epoch:{epoch}, val acc {val_acc}")
if val_acc > best_acc:
best_acc = val_acc
return best_acc
def linear_eval(model, epoch, device, args):
print(f"================== Epoch [{epoch}] =====================")
if args.arch == "simclr":
eval_model = model.backbone
elif args.arch == "moco":
eval_model = model.backbone.encoder_q
acc = train_val_linear(eval_model, device, args)
print(f"Epoch {epoch} | ***best linear_acc {acc:.2f}")