-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutil.py
389 lines (329 loc) · 11.9 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import torch
from PIL import Image
import os
import sys
import time
import random
from io import BytesIO
import PIL
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torch.nn.functional as F
import numpy as np
class SubsetImageFolder(datasets.ImageFolder):
def __init__(
self, root, transform=None, target_transform=None, subset_percentage=0.2
):
super(SubsetImageFolder, self).__init__(
root, transform=transform, target_transform=target_transform
)
self.subset_percentage = subset_percentage
self._create_subset()
def _create_subset(self):
self.subset_indices = []
labels = self.targets
unique_labels = set(labels)
for label in unique_labels:
label_indices = [i for i, l in enumerate(labels) if l == label]
subset_size = max(
1, int(len(label_indices) * self.subset_percentage))
subset_indices = random.sample(label_indices, subset_size)
self.subset_indices.extend(subset_indices)
random.shuffle(self.subset_indices)
def __getitem__(self, index):
subset_index = self.subset_indices[index]
image, label = super(SubsetImageFolder, self).__getitem__(subset_index)
return image, label
def __len__(self):
return len(self.subset_indices)
class CIFAR100_w_indices(datasets.CIFAR100):
def __len__(self):
return len(self.data)
def __getitem__(self, index):
img, target = self.data[index], self.targets[index]
img = PIL.Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
class CIFAR10_w_indices(datasets.CIFAR10):
def __len__(self):
return len(self.data)
def __getitem__(self, index):
img, target = self.data[index], self.targets[index]
img = PIL.Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
class SVHN_w_indices(datasets.SVHN):
def __len__(self):
return len(self.data)
def __getitem__(self, index):
img, target = self.data[index], self.labels[index]
img = PIL.Image.fromarray(np.transpose(img, (1, 2, 0)))
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
class Dataset_load(torch.utils.data.Dataset):
def __init__(
self,
root,
baseset,
split="train",
download=False,
):
self.baseset = baseset
self.transform = self.baseset.transform
self.samples = os.listdir(root)
self.root = root
def __len__(self):
return len(self.baseset)
def __getitem__(self, idx):
true_index = int(self.samples[idx].split(".")[0])
true_img, label, index = self.baseset[true_index]
return (
self.transform(Image.open(
os.path.join(self.root, self.samples[idx]))),
label,
true_img,
)
TOTAL_BAR_LENGTH = 65.0
last_time = time.time()
begin_time = last_time
term_width = 80
def progress_bar(current, total, msg=None):
global last_time, begin_time
if current == 0:
begin_time = time.time() # Reset for new bar.
cur_len = int(TOTAL_BAR_LENGTH * current / total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
sys.stdout.write(" [")
for i in range(cur_len):
sys.stdout.write("=")
sys.stdout.write(">")
for i in range(rest_len):
sys.stdout.write(".")
sys.stdout.write("]")
cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time
L = []
L.append(" Step: %s" % format_time(step_time))
L.append(" | Tot: %s" % format_time(tot_time))
if msg:
L.append(" | " + msg)
msg = "".join(L)
sys.stdout.write(msg)
for i in range(term_width - int(TOTAL_BAR_LENGTH) - len(msg) - 3):
sys.stdout.write(" ")
# Go back to the center of the bar.
for i in range(term_width - int(TOTAL_BAR_LENGTH / 2) + 2):
sys.stdout.write("\b")
sys.stdout.write(" %d/%d " % (current + 1, total))
if current < total - 1:
sys.stdout.write("\r")
else:
sys.stdout.write("\n")
sys.stdout.flush()
class Cutout(object):
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1:y2, x1:x2] = 0.0
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
def format_time(seconds):
days = int(seconds / 3600 / 24)
seconds = seconds - days * 3600 * 24
hours = int(seconds / 3600)
seconds = seconds - hours * 3600
minutes = int(seconds / 60)
seconds = seconds - minutes * 60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds * 1000)
f = ""
i = 1
if days > 0:
f += str(days) + "D"
i += 1
if hours > 0 and i <= 2:
f += str(hours) + "h"
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + "m"
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + "s"
i += 1
if millis > 0 and i <= 2:
f += str(millis) + "ms"
i += 1
if f == "":
f = "0ms"
return f
def JPEGcompression(image, rate=10):
outputIoStream = BytesIO()
image.save(outputIoStream, "JPEG", quality=rate, optimice=True)
outputIoStream.seek(0)
return Image.open(outputIoStream)
def aug_train(dataset, jpeg, grayscale, bdr, gaussian, cutout, args):
transform_train = transforms.Compose([])
if bdr:
transform_train.transforms.append(
transforms.RandomPosterize(bits=2, p=1))
if grayscale:
transform_train.transforms.append(transforms.Grayscale(3))
if jpeg:
transform_train.transforms.append(transforms.Lambda(JPEGcompression))
if gaussian:
transform_train.transforms.append(
transforms.GaussianBlur(3, sigma=0.1))
if dataset == "imagenet100":
if args.clean:
transform_train.transforms.append(
transforms.RandomResizedCrop(224))
else:
transform_train.transforms.append(transforms.Resize((224, 224)))
transform_train.transforms.append(transforms.RandomHorizontalFlip())
transform_train.transforms.append(
transforms.ColorJitter(
brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2
)
)
transform_train.transforms.append(transforms.ToTensor())
elif dataset == "c10":
transform_train.transforms.append(transforms.RandomCrop(32, padding=4))
transform_train.transforms.append(transforms.RandomHorizontalFlip())
transform_train.transforms.append(transforms.ToTensor())
elif dataset == "c100":
transform_train.transforms.append(transforms.RandomCrop(32, padding=4))
transform_train.transforms.append(transforms.RandomHorizontalFlip())
transform_train.transforms.append(transforms.ToTensor())
elif dataset == "svhn":
transform_train.transforms.append(transforms.ToTensor())
if cutout:
transform_train.transforms.append(Cutout(16))
return transform_train
def get_dataset(args, transform_train):
transform_test = transforms.Compose([])
if args.dataset == "imagenet100":
transform_test.transforms.append(transforms.Resize((256, 256)))
transform_test.transforms.append(transforms.CenterCrop(224)),
transform_test.transforms.append(transforms.ToTensor())
if args.dataset == "c10":
base_dataset = CIFAR10_w_indices(
root=os.environ.get("CIFAR_PATH", "dataset/cifar-10/"),
train=True,
download=False,
transform=transform_train,
)
elif args.dataset == "c100":
base_dataset = CIFAR100_w_indices(
root=os.environ.get("CIFAR_PATH", "dataset/cifar-100/"),
train=True,
download=False,
transform=transform_train,
)
elif args.dataset == "svhn":
base_dataset = SVHN_w_indices(
root=os.environ.get("CIFAR_PATH", "dataset/SVHN/"),
split="train",
download=True,
transform=transform_train,
)
elif args.dataset == "imagenet100":
base_dataset = SubsetImageFolder(
root="dataset/imagenet100/train",
transform=transform_train,
)
else:
raise ValueError("Valid type and dataset.")
if args.pure:
poisons_path = os.path.join("dataset", f"{args.type}_pure")
else:
poisons_path = os.path.join("dataset", f"{args.type}_poisons")
dataset_path = os.path.join(poisons_path, args.dataset)
type_poisons = ["dc", "em", "rem", "ntga",
"hypo", "lsp", "ar", "tap", "ops"]
if args.type in type_poisons:
if args.dataset == "imagenet100":
train_dataset = datasets.ImageFolder(
root=dataset_path,
transform=transform_train,
)
else:
dataset_path = os.path.join(dataset_path, "data")
train_dataset = Dataset_load(
root=dataset_path, baseset=base_dataset)
else:
raise ValueError("Valid type poisons")
if args.clean:
train_dataset = base_dataset
if args.dataset == "c10":
test_dataset = datasets.CIFAR10(
root="dataset/cifar-10/",
train=False,
download=False,
transform=transform_test,
)
elif args.dataset == "c100":
test_dataset = datasets.CIFAR100(
root="dataset/cifar-100/",
train=False,
download=False,
transform=transform_test,
)
elif args.dataset == "svhn":
test_dataset = datasets.SVHN(
root="dataset/SVHN/",
split="test",
download=True,
transform=transform_test,
)
elif args.dataset == "imagenet100":
test_dataset = SubsetImageFolder(
root="dataset/imagenet100/val",
transform=transform_test,
)
return train_dataset, test_dataset
def get_loader(args, train_dataset, test_dataset):
if args.dataset == "imagenet100":
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.bs, shuffle=True, num_workers=4, drop_last=True
)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=args.bs, shuffle=True, num_workers=4
)
else:
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.bs, shuffle=False, num_workers=4, drop_last=True
)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=args.bs, shuffle=False, num_workers=4
)
return train_loader, test_loader
def loss_mix(y, logits):
criterion = F.cross_entropy
loss_a = criterion(logits, y[:, 0].long(), reduction="none")
loss_b = criterion(logits, y[:, 1].long(), reduction="none")
return ((1 - y[:, 2]) * loss_a + y[:, 2] * loss_b).mean()
def acc_mix(y, logits):
pred = torch.argmax(logits, dim=1).to(y.device)
return (1 - y[:, 2]) * pred.eq(y[:, 0]).float() + y[:, 2] * pred.eq(y[:, 1]).float()