-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathus_train_pu.py
243 lines (199 loc) · 6.87 KB
/
us_train_pu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import argparse
import time
from PIL import Image
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torchvision import transforms
from util import CIFAR10_w_indices
from util_us import (
AverageMeter,
CLmodel,
SimCLRLoss,
MoCoLoss,
adjust_lr,
linear_eval,
)
class SeparateTransform:
def __init__(self, transform):
self.transform = transform
def __call__(self, img, target, index):
for t in self.transform:
img = t(img)
return img
class Dataset_load(torch.utils.data.Dataset):
def __init__(
self,
root,
baseset,
transform,
split="train",
download=False,
):
self.baseset = baseset
self.transform = transform
self.samples = os.listdir(root)
self.root = root
def __len__(self):
return len(self.baseset)
def __getitem__(self, idx):
true_index = int(self.samples[idx].split(".")[0])
true_img, label, index = self.baseset[true_index]
if self.transform is not None:
sep_transform = SeparateTransform(self.transform)
img = [
sep_transform(Image.open(os.path.join(
self.root, self.samples[idx])), label, index),
sep_transform(Image.open(os.path.join(
self.root, self.samples[idx])), label, index),
]
return img, label, index
def set_loader(args):
# construct data loader
train_transform = [
transforms.RandomResizedCrop(size=32, scale=(0.2, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply(
[transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(),
]
base_dataset = CIFAR10_w_indices(
root=os.environ.get("CIFAR_PATH", "dataset/cifar-10/"),
train=True,
download=False,
transform=transforms.ToTensor(),
)
if args.type == "tue":
if args.arch == "simclr":
train_dataset = Dataset_load(
root=f"dataset/tue_{args.defense}/simclr/data/",
baseset=base_dataset,
transform=train_transform,
)
else:
train_dataset = Dataset_load(
root=f"dataset/tue_{args.defense}/moco/data/",
baseset=base_dataset,
transform=train_transform,
)
elif args.type == "ucl":
if args.arch == "simclr":
train_dataset = Dataset_load(
root=f"dataset/ucl_{args.defense}/simclr/data/",
baseset=base_dataset,
transform=train_transform,
)
else:
train_dataset = Dataset_load(
root=f"dataset/ucl_{args.defense}/moco/data/",
baseset=base_dataset,
transform=train_transform,
)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=512, num_workers=4, pin_memory=True, drop_last=True
)
return train_loader
def us_train(train_loader, model, criterion, optimizer, epoch, device, args):
# train clean CL model or re-training CL model on poisoned dataset
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
end = time.time()
for idx, (images, labels, indexes) in enumerate(train_loader):
data_time.update(time.time() - end)
images = torch.cat([images[0], images[1]], dim=0)
images, labels, indexes = (
images.to(device),
labels.to(device),
indexes.to(device),
)
output = model(images, indexes, labels=labels)
if args.arch == "simclr":
features = output["features"]
labels = labels
elif args.arch == "moco":
moco_logits = output["moco_logits"]
bsz = labels.shape[0]
# compute loss
if args.arch == "simclr":
con_loss = criterion(features)
elif args.arch == "moco":
con_loss = criterion(moco_logits)
# update metric
losses.update(con_loss.item(), bsz)
# SGD
optimizer.zero_grad()
con_loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
print(f"Epoch: {epoch}, Contrastive Loss:{losses.avg}")
return losses.avg
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--arch", default="simclr",
type=str, help="simclr, moco")
parser.add_argument("--dataset", default="c10", type=str, help="c10, c100")
parser.add_argument("--type", default="ucl", type=str, help="tue, ucl")
parser.add_argument("--lr", default=0.5, type=float)
parser.add_argument("--lr_decay_rate", default=0.1, type=float)
parser.add_argument("--epochs", default=500, type=int)
parser.add_argument("--eval_epochs", default=100, type=int)
parser.add_argument(
"--defense", default=None, type=str, help="ueraser, pure"
)
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.autograd.set_detect_anomaly(True)
cudnn.benchmark = True
model = CLmodel(arch=args.arch, dataset=args.dataset, args=args)
if args.arch == "simclr":
criterion = SimCLRLoss(temperature=0.5)
elif args.arch == "moco":
criterion = MoCoLoss(temperature=0.2)
args.lr = 0.3
model = model.to(device)
optimizer = optim.SGD(
model.backbone.parameters(),
lr=args.lr,
momentum=0.9,
weight_decay=1e-4,
)
train_loader = set_loader(args)
start_epoch = 1
# training routine
for epoch in range(start_epoch, args.epochs + 1):
adjust_lr(args, optimizer, epoch)
time1 = time.time()
loss = us_train(train_loader, model, criterion,
optimizer, epoch, device, args)
time2 = time.time()
print(f"epoch:{epoch}, total time:{time2 - time1:.2f}, loss:{loss}")
# linear probing every eval epochs
if epoch % args.eval_epochs == 0:
linear_eval(model, epoch, device, args)
# save the last model
directory = "log"
path = os.path.join(directory, "unsupervised")
dir = os.path.join(path, args.dataset)
save_folder = os.path.join(dir, args.type)
if not os.path.exists(save_folder):
os.makedirs(save_folder)
save_file = os.path.join(
save_folder,
f"type={args.type}-arch={args.arch}-dataset={args.dataset}-defense={args.defense}.pth",
)
print("==> Saving...")
state = {
"args": args,
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
}
torch.save(state, save_file)
if __name__ == "__main__":
main()