-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpure_gen.py
132 lines (111 loc) · 3.93 KB
/
pure_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import argparse
import torch
import numpy as np
from defense.diffusion import diffpure
from tqdm import tqdm
import PIL
import os
import cv2
from util import CIFAR10_w_indices, NTGA_Dataset_load
def get_dataset(args, transform_train):
if args.dataset == "c10":
base_dataset = CIFAR10_w_indices(
root=os.environ.get("CIFAR_PATH", "dataset/cifar-10/"),
train=True,
download=False,
transform=transform_train,
)
else:
raise ValueError("Valid type and dataset.")
poisons_path = os.path.join("dataset", f"{args.type}_poisons")
dataset_path = os.path.join(poisons_path, args.dataset)
type_poisons = ["dc", "em", "rem", "hypo", "lsp", "ar", "tap", "ops", "ntga"]
if args.type in type_poisons:
dataset_path = os.path.join(dataset_path, "data")
train_dataset = dataset_load(root=dataset_path, baseset=base_dataset)
else:
raise ValueError("Valid type poisons")
return train_dataset
class dataset_load(torch.utils.data.Dataset):
def __init__(
self,
root,
baseset,
split="train",
download=False,
):
self.baseset = baseset
self.transform = self.baseset.transform
self.samples = os.listdir(root)
self.root = root
def __len__(self):
return len(self.baseset)
def __getitem__(self, idx):
true_index = int(self.samples[idx].split(".")[0])
true_img, label, index = self.baseset[true_index]
return (
self.transform(PIL.Image.open(os.path.join(self.root, self.samples[idx]))),
label,
true_index,
idx,
)
def export_poison(args, advinputs, trainset):
directory = f"dataset/{args.type}_pure/"
path = os.path.join(directory, args.dataset)
if not os.path.exists(path):
os.makedirs(path)
def _torch_to_PIL(image_tensor):
image_denormalized = image_tensor
image_torch_uint8 = (
image_denormalized.mul(255)
.add_(0.5)
.clamp_(0, 255)
.permute(1, 2, 0)
.to("cpu", torch.uint8)
)
image_PIL = PIL.Image.fromarray(image_torch_uint8.numpy())
return image_PIL
def _save_image(input, label, true_index, idx, location, train=True):
filename = os.path.join(location, str(true_index) + ".png")
adv_input = advinputs[idx]
_torch_to_PIL(adv_input).save(filename)
os.makedirs(os.path.join(path, "data"), exist_ok=True)
for input, label, true_index, idx in tqdm(trainset, desc="Pure dataset generation"):
_save_image(
input,
label,
true_index,
idx,
location=os.path.join(path, "data"),
train=True,
)
print("Dataset fully exported.")
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="c10")
parser.add_argument(
"--type",
default="lsp",
type=str,
help="ar, dc, em, rem, hypo, tap, lsp, ntga, ops",
)
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
transform_train = transforms.ToTensor()
train_set = get_dataset(args, transform_train)
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=512, shuffle=False, num_workers=4, drop_last=False
)
adv_inputs, adv_targets = [], []
for batch_idx, (inputs, targets, index, index1) in enumerate(train_loader):
inputs, targets = inputs.to(device), targets.to(device)
inputs = diffpure(inputs)
adv_inputs.append(inputs.cpu())
adv_targets.append(targets.cpu())
adv_inputs = torch.cat(adv_inputs, dim=0)
adv_targets = torch.cat(adv_targets, dim=0)
export_poison(args, adv_inputs, train_loader.dataset)
if __name__ == "__main__":
main()