-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpoisons_generate.py
325 lines (299 loc) · 12 KB
/
poisons_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import os
import torch
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import os
import PIL
import argparse
import torch.nn as nn
import random
import numpy as np
from tqdm import tqdm
import torchvision.models as models
from attack import ar_poisons, dc_poisons, em_poisons, hypo_poisons, lsp_poisons, ops_poisons, rem_poisons, tap_poisons
# from attack import ntga_poisons
class SubsetImageFolder(datasets.ImageFolder):
def __init__(
self, root, transform=None, target_transform=None, subset_percentage=0.2
):
super(SubsetImageFolder, self).__init__(
root, transform=transform, target_transform=target_transform
)
self.subset_percentage = subset_percentage
self._create_subset()
def _create_subset(self):
self.subset_indices = []
labels = self.targets
unique_labels = set(labels)
for label in unique_labels:
label_indices = [i for i, l in enumerate(labels) if l == label]
subset_size = max(1, int(len(label_indices) * self.subset_percentage))
subset_indices = random.sample(label_indices, subset_size)
self.subset_indices.extend(subset_indices)
random.shuffle(self.subset_indices)
def __getitem__(self, index):
subset_index = self.subset_indices[index]
image, label = super(SubsetImageFolder, self).__getitem__(subset_index)
return image, label, subset_index
def __len__(self):
return len(self.subset_indices)
class CIFAR100_w_indices(datasets.CIFAR100):
def __len__(self):
return len(self.data)
def __getitem__(self, index):
img, target = self.data[index], self.targets[index]
img = PIL.Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
class CIFAR10_w_indices(datasets.CIFAR10):
def __len__(self):
return len(self.data)
def __getitem__(self, index):
img, target = self.data[index], self.targets[index]
img = PIL.Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
class SVHN_w_indices(datasets.SVHN):
def __len__(self):
return len(self.data)
def __getitem__(self, index):
img, target = self.data[index], self.labels[index]
img = PIL.Image.fromarray(np.transpose(img, (1, 2, 0)))
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
def create_poison(args):
device = "cuda" if torch.cuda.is_available() else "cpu"
# Data loading code
if args.dataset == "c10":
train_dataset = CIFAR10_w_indices(
root=os.environ.get("CIFAR_PATH", "./dataset/cifar-10/"),
train=True,
download=True,
transform=transforms.ToTensor(),
)
noise_size, noise_crop = (36, 36), 4
elif args.dataset == "c100":
train_dataset = CIFAR100_w_indices(
root=os.environ.get("CIFAR_PATH", "./dataset/cifar-100/"),
train=True,
download=True,
transform=transforms.ToTensor(),
)
noise_size, noise_crop = (36, 36), 4
elif args.dataset == "svhn":
train_dataset = SVHN_w_indices(
root=os.environ.get("SVHN_PATH", "./dataset/SVHN/"),
split="train",
download=True,
transform=transforms.ToTensor(),
)
noise_size, noise_crop = (36, 36), 4
elif args.dataset == "imagenet100":
train_dataset = SubsetImageFolder(
root="../dataset/imagenet100/train",
transform=transforms.Compose(
[transforms.Resize((224, 224)), transforms.ToTensor()]
),
)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=128, shuffle=False, num_workers=args.workers
)
num_classes = 10
if args.dataset == "c100" or args.dataset == "imagenet100":
num_classes = 100
poison_img = []
if args.type == 'ar':
ar_processes = ar_poisons.create_ar_processes(args.dataset)
for batch_idx, (inputs, targets, index) in enumerate(train_loader):
advinputs = ar_poisons.perturb_with_ar_process(
ar_processes,
inputs,
targets,
noise_size,
noise_crop,
eps=args.eps,
)
poison_img.append(advinputs.cpu())
poison_img = torch.cat(poison_img, dim=0)
elif args.type == 'dc':
atknet = dc_poisons.UNet(3).to(device)
dir = "attack/data/dc_pretrained/atk.0.032.best.pth"
atknet.load_state_dict(torch.load(dir))
atknet.eval()
for batch_idx, (inputs, targets, index) in enumerate(train_loader):
inputs, targets = inputs.to(device), targets.to(device)
with torch.no_grad():
noise = atknet(inputs) * args.eps
atkdata = torch.clamp(inputs + noise, 0, 1)
poison_img.append(atkdata.detach().cpu())
poison_img = torch.cat(poison_img, dim=0)
elif args.type == 'em':
if args.dataset == "c10" or args.dataset == "c100":
noise = torch.zeros([50000, 3, 32, 32])
elif args.dataset == "svhn":
noise = torch.zeros([73257, 3, 32, 32])
elif args.dataset == "imagenet100":
noise = torch.zeros([20000, 3, 224, 224])
model = em_poisons.ResNet_Model(name="resnet18", num_classes=num_classes)
model = model.cuda()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(
params=model.parameters(), lr=0.1, weight_decay=0.0005, momentum=0.9
)
noise_generator = em_poisons.PerturbationTool(
epsilon=args.eps, num_steps=5, step_size=args.eps / 5
)
poison_img, targets = em_poisons.generate_noises(
model, train_loader, noise, noise_generator, optimizer, criterion
)
elif args.type == 'hypo':
model = hypo_poisons.ResNet18()
print("Loading checkpoint")
checkpoint = torch.load("./attack/data/hypo_checkpoint.pth")
model.load_state_dict(checkpoint["model"])
model = model.cuda()
model.eval()
poison_img = hypo_poisons.poison_hypo(args, train_loader, model)
elif args.type == 'lsp':
if args.dataset == "svhn":
advinputs, targets = lsp_poisons.perturb_with_lsp(
train_dataset.data, train_dataset.labels, args.dataset
)
elif args.dataset == "imagenet100":
data, targets = [], []
for idx in tqdm(train_dataset, desc="Data progress"):
data.append(np.array(idx[0]))
targets.append(np.array(idx[1]))
data = np.array(data)
targets = np.array(targets)
advinputs, targets = lsp_poisons.perturb_with_lsp(data, targets, args.dataset)
else:
advinputs, targets = lsp_poisons.perturb_with_lsp(
train_dataset.data, train_dataset.targets, args.dataset
)
elif args.type == 'ntga':
x_train_adv, x_train = ntga_poisons.ntga_generate(args.eps, args.dataset)
ntga_poisons.export_poison(args.dataset, x_train_adv, x_train)
elif args.type == 'ops':
images = train_dataset.data.astype(np.float32) / 255
noise = ops_poisons.pixel_search(train_dataset, sparsity=1, dataset=args.dataset)
if args.dataset == "svhn":
targets = np.array(train_dataset.labels)
else:
targets = np.array(train_dataset.targets)
poison_img = ops_poisons.Perturbed_Dataset(
images, noise, targets, transforms.ToTensor())
elif args.type == 'rem':
model = rem_poisons.resnet18(3, num_classes)
if args.dataset == "c10" or args.dataset == "c100":
noise = torch.zeros([50000, 3, 32, 32])
elif args.dataset == "svhn":
noise = torch.zeros([73257, 3, 32, 32])
elif args.dataset == "imagenet100":
noise = torch.zeros([20000, 3, 224, 224])
model = models.resnet18(weights=None)
in_f = model.fc.in_features
model.fc = nn.Linear(in_f, num_classes)
model = model.cuda()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(
params=model.parameters(), lr=0.1, weight_decay=0.0005, momentum=0.9
)
noise_generator = rem_poisons.PerturbationTool(
epsilon=args.eps, num_steps=5, step_size=args.eps / 5
)
noise_generator_adv = rem_poisons.PerturbationTool(
epsilon=args.eps / 2, num_steps=5, step_size=args.eps / 10
)
poison_img, targets = rem_poisons.generate_noises(
model,
train_loader,
noise,
noise_generator,
noise_generator_adv,
optimizer,
criterion,
)
elif args.type == 'tap':
tap_poisons.tap_gen()
else:
raise ValueError("Valid type poisons")
# Save poison
if args.type != 'lsp' and args.type != 'tap':
if args.dataset == "imagenet100":
export_imagenet_poison(args, poison_img, targets)
else:
export_poison(args, poison_img, train_loader.dataset)
def export_poison(args, poison_img, trainset):
directory = f'./dataset/{args.type}_poisons/'
path = os.path.join(directory, args.dataset)
def _torch_to_PIL(image_tensor):
image_denormalized = image_tensor
image_torch_uint8 = (
image_denormalized.mul(255)
.add_(0.5)
.clamp_(0, 255)
.permute(1, 2, 0)
.to("cpu", torch.uint8)
)
image_PIL = PIL.Image.fromarray(image_torch_uint8.numpy())
return image_PIL
def _save_image(input, label, idx, location, train=True):
filename = os.path.join(location, str(idx) + ".png")
adv_input = poison_img[idx]
_torch_to_PIL(adv_input).save(filename)
os.makedirs(os.path.join(path, "data"), exist_ok=True)
for input, label, idx in trainset:
_save_image(input, label, idx, location=os.path.join(
path, "data"), train=True)
print("Dataset fully exported.")
def export_imagenet_poison(args, advinputs, targets):
directory = f'./dataset/{args.type}_poisons/'
path = os.path.join(directory, args.dataset)
if not os.path.exists(path):
os.makedirs(path)
def _torch_to_PIL(image_tensor):
image_denormalized = image_tensor
image_torch_uint8 = (
image_denormalized.mul(255)
.add_(0.5)
.clamp_(0, 255)
.permute(1, 2, 0)
.to("cpu", torch.uint8)
)
image_PIL = PIL.Image.fromarray(image_torch_uint8.numpy())
return image_PIL
targets = np.array(targets)
for i in range(100):
os.makedirs(os.path.join(path, str(i)), exist_ok=True)
for j in range(advinputs.shape[0]):
filename = os.path.join(path, str(targets[j]) + "/" + str(j) + ".png")
_torch_to_PIL(advinputs[j]).save(filename)
print("Dataset fully exported.")
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", default="c10",
type=str, help="c10, c100, svhn, imagenet100")
parser.add_argument(
"--type",
default="ar",
type=str,
help="ar, dc, em, rem, hypo, tap, lsp, ntga, ops",
)
parser.add_argument("--workers", type=int, default=4,
help="number of workers")
parser.add_argument("--eps", type=float, default=8 / 255, help='8 / 255 for L_inf and 1.0 for L_2')
parser.add_argument("--step_size", default=0.8 / 255, type=float)
args = parser.parse_args()
create_poison(args)
if __name__ == "__main__":
main()