-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmadrys.py
84 lines (74 loc) · 2.91 KB
/
madrys.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
import torch.nn as nn
import torch.nn.functional as F
import util
from torch.autograd import Variable
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
class MadrysLoss(nn.Module):
def __init__(
self,
step_size=2/255,
epsilon=8/255,
perturb_steps=10,
distance="L_inf",
):
super(MadrysLoss, self).__init__()
self.step_size = step_size
self.epsilon = epsilon
self.perturb_steps = perturb_steps
self.distance = distance
self.cross_entropy = torch.nn.CrossEntropyLoss()
def forward(self, model, x_natural, y, optimizer):
model.eval()
for param in model.parameters():
param.requires_grad = False
# generate adversarial example
if self.distance == "L_inf":
x_adv = x_natural.clone() + self.step_size * torch.randn(
x_natural.shape
).to(device)
for _ in range(self.perturb_steps):
x_adv.requires_grad_()
loss_ce = self.cross_entropy(model(x_adv), y)
grad = torch.autograd.grad(loss_ce, [x_adv])[0]
x_adv = x_adv.detach() + self.step_size * torch.sign(grad.detach())
x_adv = torch.min(
torch.max(x_adv, x_natural - self.epsilon), x_natural + self.epsilon
)
x_adv = torch.clamp(x_adv, 0.0, 1.0)
elif self.distance == "L_2":
l = len(x_natural.shape) - 1
rp = torch.randn_like(x_natural)
rp_norm = rp.view(rp.shape[0], -1).norm(dim=1).view(-1, *([1] * l))
x_adv = x_natural.clone() + self.step_size * rp / (rp_norm + 1e-10).to(
device
)
for _ in range(self.perturb_steps):
x_adv.requires_grad_()
loss_ce = self.cross_entropy(model(x_adv), y)
grad = torch.autograd.grad(loss_ce, [x_adv])[0]
g_norm = torch.norm(grad.view(grad.shape[0], -1), dim=1).view(
-1, *([1] * l)
)
scaled_g = grad / (g_norm + 1e-10)
x_adv = x_adv.detach() + self.step_size * (scaled_g).detach()
diff = x_adv - x_natural
diff = diff.renorm(p=2, dim=0, maxnorm=self.epsilon)
x_adv = x_natural.clone() + diff
x_adv = torch.clamp(x_adv, 0.0, 1.0)
else:
x_adv = x_natural.clone() + self.epsilon * torch.randn(x_natural.shape).to(
device
)
x_adv = torch.clamp(x_adv, 0.0, 1.0)
for param in model.parameters():
param.requires_grad = True
model.train()
# x_adv = Variable(x_adv, requires_grad=False)
optimizer.zero_grad()
outputs = model(x_adv)
loss = self.cross_entropy(outputs, y)
return outputs, loss