-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
159 lines (126 loc) · 5.68 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = "Han"
__email__ = "liuhan132@foxmail.com"
import argparse
import torch
import torch.nn
import logging
from tqdm import tqdm
from models import LWPT
from datareaders import PTReader
from utils.optims import Optim
from utils.config import init_logging, init_env
from utils.metrics import evaluate_acc
logger = logging.getLogger(__name__)
def main(config_path, in_infix, out_infix, is_train, is_test, gpuid):
logger.info('-------------LW-PT Pre-Training---------------')
logger.info('initial environment...')
config, enable_cuda, device, writer = init_env(config_path, in_infix, out_infix,
writer_suffix='pt_log_path', gpuid=gpuid)
logger.info('reading dataset...')
dataset = PTReader(config)
logger.info('constructing model...')
model = LWPT(config).to(device)
model.load_parameters(enable_cuda)
# loss function
criterion = torch.nn.NLLLoss()
optimizer = Optim(config['train']['optimizer'],
lr=config['train']['learning_rate'],
max_grad_norm=config['train']['clip_grad_norm'],
lr_decay=config['train']['learning_rate_decay'],
start_decay_at=config['train']['start_decay_at'])
optimizer.set_parameters(model.parameters())
# dataset loader
batch_train_data = dataset.get_dataloader_train()
batch_valid_data = dataset.get_dataloader_valid()
if is_train:
logger.info('start training...')
save_steps = config['train']['save_steps']
eval_steps = config['train']['eval_steps']
decay_steps = config['train']['decay_steps']
# train
model.train() # set training = True, make sure right dropout
train_on_model(model=model,
criterion=criterion,
optimizer=optimizer,
dataloader=batch_train_data,
valid_dataloader=batch_valid_data,
device=device,
writer=writer,
save_steps=save_steps,
eval_steps=eval_steps,
decay_steps=decay_steps)
if is_test:
logger.info('start testing...')
with torch.no_grad():
model.eval()
valid_acc = eval_on_model(model=model,
dataloader=batch_valid_data,
device=device)
logger.info("valid_acc=%.2f%%" % (valid_acc * 100))
writer.close()
logger.info('finished.')
def train_on_model(model, criterion, optimizer, dataloader, valid_dataloader,
device, writer, save_steps, eval_steps, decay_steps):
num_iters = len(dataloader)
for step_i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Training...'):
step_i += 1
model.zero_grad()
# batch data
batch = [x.to(device) if x is not None else x for x in batch]
cls_truth = batch[-1]
batch_input = batch[:-1]
# forward
model.train()
cls_predict = model.forward(*batch_input)
loss = criterion(cls_predict, cls_truth)
loss.backward()
# evaluate
batch_acc, batch_eq_num = evaluate_acc(cls_predict, cls_truth)
optimizer.step() # update parameters
# logging
batch_loss = loss.item()
writer.add_scalar('Train-Loss', batch_loss, global_step=step_i)
writer.add_scalar('Train-Acc', batch_acc, global_step=step_i)
if step_i % save_steps == 0 or step_i == num_iters:
logger.debug('Steps %d: loss=%.5f, acc=%.2f%%' % (step_i, batch_loss, batch_acc * 100))
model.save_parameters(step_i)
if step_i % eval_steps == 0 or step_i == num_iters:
with torch.no_grad():
model.eval()
valid_acc = eval_on_model(model=model,
dataloader=valid_dataloader,
device=device)
writer.add_scalar('Train-Valid-Acc', valid_acc, global_step=step_i)
logger.info("Step %d: valid_acc=%.2f%%" % (step_i, valid_acc * 100))
# learning rate decay on steps
if step_i % decay_steps == 0:
optimizer.updateLearningRate(step_i) # learning rate decay
def eval_on_model(model, dataloader, device):
eq_num = 0
all_num = 0
for batch in tqdm(dataloader, desc='Evaluating...'):
# batch data
batch = [x.to(device) if x is not None else x for x in batch]
cls_truth = batch[-1]
batch_input = batch[:-1]
# forward
cls_predict = model.forward(*batch_input)
batch_acc, batch_eq_num = evaluate_acc(cls_predict, cls_truth)
batch_num = cls_truth.shape[0]
eq_num += batch_eq_num
all_num += batch_num
acc = eq_num / all_num
return acc
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-config', type=str, default='config.yaml', help='config path')
parser.add_argument('-in', dest='in_infix', type=str, default='default', help='input data_path infix')
parser.add_argument('-out', type=str, default='default', help='output data_path infix')
parser.add_argument('-train', action='store_true', default=False, help='enable train step')
parser.add_argument('-test', action='store_true', default=False, help='enable test step')
parser.add_argument('-gpuid', type=int, default=None, help='gpuid')
args = parser.parse_args()
init_logging(out_infix=args.out)
main(args.config, args.in_infix, args.out, is_train=args.train, is_test=args.test, gpuid=args.gpuid)