-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathLegendreCoeffComp.py
161 lines (125 loc) · 4.37 KB
/
LegendreCoeffComp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env python3
from utility.IO import *
from utility.angle import LegendreCoeff
import numpy as np
import sys
import argparse
# import matplotlib.pyplot as plt
# import matplotlib as mat
# mat.rcParams.update({'font.size': 16})
# mat.rcParams["font.family"] = "Times New Roman"
# size = 12
parser = argparse.ArgumentParser("Specify some parameters.")
parser.add_argument("folder1")
# parser.add_argument("folder2")
args = parser.parse_args()
folderA = args.folder1
# folderF = args.folder2
print("Folders : " + folderA + ", ")
legendreL = [0,1,2,3]
Para = param(folderA)
# 0: I, 1: T, 2: U, 3: S
Channel = [0, 1, 2, 3]
ChanName = {0: "I", 1: "T", 2: "U", 3: "S"}
ChanColor = {0: "k", 1: "r", 2: "b", 3: "g"}
# 0: total, 1: order 1, ...
Order = range(Para.Order+1)
Irreducible = True
shape = (Para.Order+1, 4, Para.AngGridSize, Para.MomGridSize, 2)
Data, Norm, Step, Grid = LoadFile(folderA, "vertex_pid[0-9]+.dat", shape)
AngGrid = Grid["AngleGrid"] # cos
MomGrid = Grid["KGrid"]
Angle = np.arccos(AngGrid)
# Data shape : (pid numbers, order, chan, AngleGrid, KGrid, 2)
def PrintInfo(Channel, Data, DataErr):
Data = -np.copy(Data)
DataErr = np.copy(DataErr)
Data *= Para.Nf
DataErr *= Para.Nf
# print Data.shape, DataErr.shape
print("{0} Q/kF, Data, Error".format(Channel))
print("As: {0:6.2f}, {1:10.6f}, {2:10.6f}".format(
MomGrid[0], Data[0], DataErr[0]))
print("Aa: {0:6.2f}, {1:10.6f}, {2:10.6f}".format(
MomGrid[0], Data[1], DataErr[1]))
def SpinMapping(Data):
d = np.copy(Data)
d[..., 0] += d[..., 1]/Para.Spin
d[..., 1] /= Para.Spin
return d
def Bare(angle, Lambda):
Bare = np.zeros([Para.AngGridSize, 2])
if Irreducible == False:
Bare[:, 0] += -8.0*np.pi/(Para.Mass2+Lambda)*Para.Nf
Bare[:, 1] += +8.0 * np.pi / \
((2.0*Para.kF*np.sin(angle/2.0))**2+Para.Mass2+Lambda)*Para.Nf
Bare = SpinMapping(Bare)
return Bare
bare = Bare(Angle, 0.0)
# Data shape : (pid numbers, order, chan, AngleGrid, KGrid, 2)
Data = [np.sum(d[1:Para.Order+1, ...], axis=0) for d in Data]
# Data shape : (pid numbers, chan, AngleGrid, KGrid, 2)
#----------------
Adata = [SpinMapping(np.sum(d[:, :, 0, :], axis=0))*Para.Nf for d in Data]
# Adata shape : (pid numbers, AngleGrid, 2), channels are summed, momentum is set as p=0.
avg, err = Estimate(Adata, Norm)
bareLambda = Bare(Angle, Para.Lambda)
Adata_s = -(avg[:, 0]+bareLambda[:, 0])
Adata_a = -(avg[:, 1]+bareLambda[:, 1])
Aerr_s = -err[:, 0]
Aerr_a = -err[:, 1]
As = LegendreCoeff(Adata_s, AngGrid, legendreL)
Aa = LegendreCoeff(Adata_a, AngGrid, legendreL)
AsErr = LegendreCoeff(Aerr_s, AngGrid, legendreL)
AaErr = LegendreCoeff(Aerr_a, AngGrid, legendreL)
# #----------------------------------------------
# Para = param(folderF)
# Data, Norm, Step, Grid = LoadFile(folderF, "vertex_pid[0-9]+.dat", shape)
# AngGrid = Grid["AngleGrid"]
# MomGrid = Grid["KGrid"]
# Angle = np.arccos(AngGrid)
# Data = [np.sum(d[1:Para.Order+1, ...], axis=0) for d in Data]
# #----
# Fdata = [SpinMapping(np.sum(d[:, :, 0, :], axis=0))*Para.Nf for d in Data]
# avg, err = Estimate(Fdata, Norm)
# bareLambda = Bare(Angle, Para.Lambda)
# Fdata_s = -(avg[:, 0]+bareLambda[:, 0])
# Fdata_a = -(avg[:, 1]+bareLambda[:, 1])
# Ferr_s = -err[:, 0]
# Ferr_a = -err[:, 1]
# Fs = LegendreCoeff(Fdata_s, AngGrid, legendreL)
# Fa = LegendreCoeff(Fdata_a, AngGrid, legendreL)
# FsErr = LegendreCoeff(Ferr_s, AngGrid, legendreL)
# FaErr = LegendreCoeff(Ferr_a, AngGrid, legendreL)
def renormalize(ldict):
newl = {}
for l in ldict:
newl[l] = ldict[l]/(1 + ldict[l]/(2*l+1))
return newl
def renormalize_error(ldict, lerrdict):
newl = {}
for l in ldict:
x = ldict[l]/(2*l+1)
partial_Fl = 1.0/(1+x) - x/((1+x)**2)
newl[l] = partial_Fl * lerrdict[l]
return newl
def AFprint(Bl, Errl):
for k in Bl.keys():
print("order-" + str(k) + ": ", Bl[k], "+-", abs(Errl[k]) )
# print("Fs: ")
# AFprint(Fs, FsErr)
# print("Fa:")
# AFprint(Fa, FaErr)
print("----------------------------------\nFs:")
AFprint(As, AsErr)
AFprint(renormalize(As), renormalize_error(As, AsErr))
print("Fa:")
AFprint(Aa, AaErr)
# print("\n\nrenormalized Fs :")
# AFprint(renormalize(Fs), renormalize_error(Fs, FsErr))
# print("As:")
# AFprint(As, AsErr)
# print("\nrenormalized Fa:")
# AFprint(renormalize(Fa), renormalize_error(Fa, FaErr))
# print("Aa:")
# AFprint(Aa, AaErr)