-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTraining.sh
executable file
·66 lines (63 loc) · 2.4 KB
/
Training.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
export CUDA_VISIBLE_DEVICES=0
# Parameter details:
# --is_training : 1 for Training, 0 otherwise
# --use_std_rnn : Use standard ConvLSTM instead of SpatioTemporalLSTM, this is an baseline
# --device : cuda
# --saveckpt_step : Save checkpoint after certain number of epochs
# --pretrained_network: Path to pretrained model
# --traindata : Path to training dataset
# --testdata : Path to testing dataset
# --saveckpt_path : Path to save checkpoints
# --savetestimages : Path to save Test images
# --seq_len : Total length of the sequence
# --input_len : Input length to the prediction model
# --seqimg_gap : Gap between two sequences (least value: 1)
# --img_width : Original image width
# --img_height : Original image height
# --resize_img : Bool for resizing the original image
# --num_hidden : Number of hidden layers
# --use_combinedStaticSemantic : Combined Static and Semantic objects
# --use_StaticSemantic : Separate Static and Semantic objects
# --use_StaticFull : Input is static and full image and predict separate Static and Semantic objects
# --use_semantic_masking : Use masking for semantic labels in separate static-semantic-prediction
# --reverse_scheduled_sampling : Boolean for choosing the training scheme
# --scheduled_sampling : Training scheme
python3 -u main.py \
--is_training 1 \
--use_std_rnn 0 \
--device cuda \
--saveckpt_step 1 \
--traindata /.../star_predrnn/dataset/nuscenes_train \
--testdata /.../star_predrnn/dataset/nuscenes_test \
--saveckpt_path /.../star_predrnn/checkpoints/StaticSemantic_masked \
--savetestimages /.../star_predrnn/results/StaticSemantic_masked \
--seq_len 10 \
--input_len 6 \
--seqimg_gap 2 \
--img_channels 1 \
--img_width 600 \
--img_height 600 \
--resize_img 1 \
--resize_img_ht 256 \
--resize_img_wd 256 \
--model_name predrnn \
--use_combinedStaticSemantic 0 \
--use_StaticSemantic 1 \
--use_StaticFull 0 \
--use_semantic_masking 0 \
--filter_size 5 \
--stride 1 \
--reverse_scheduled_sampling 1 \
--r_sampling_step1 25000 \
--r_sampling_step2 50000 \
--r_exp_alpha 5000 \
--scheduled_sampling 1 \
--sampling_stop_iter 50000 \
--sampling_start_value 1.0 \
--sampling_changing_rate 0.00002 \
--k_loss 10 \
--lr 0.0003 \
--batch_size 1 \
--epochs 30 \
--display_batch_interval 500 \
--optim_step 8