-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
151 lines (119 loc) · 4.57 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
import re
import numpy as np
import json
import pickle
import base64
from io import BytesIO
# fastai
from fastai.vision import load_learner
from fastai.vision import open_image
from efficientnet_pytorch import EfficientNet
from efficientnet_pytorch.model import MBConvBlock
from efficientnet_pytorch.utils import Identity,Conv2dStaticSamePadding,BlockArgs,GlobalParams
import matplotlib.pyplot as plt
#torch
import torch
import numpy as np
import cv2
from PIL import Image
# Flask utils
from flask import Flask, redirect, url_for, request, render_template, send_from_directory
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer
# Define a flask app
app = Flask(__name__)
model_path="dr.pth"
dr_model=load_learner('models/',model_path)
gl_model = torch.load('models/gl.pth')
decode_prediction=["No DR","Mild","Moderate","Severe","Proliferative DR"]
def img_boundary(img_,mask_,kernel):
disk=mask_[:,:,1]
# disk=mask_
disk=disk.astype(np.uint8)
contours, hierarchy = cv2.findContours(disk, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE, offset=(-1, -1))
cv2.drawContours(img_, contours, -1, (127, 127, 127), 3)
cnt1=contours[0]
cnt2=contours[1]
xdt,ydt = tuple(cnt1[cnt1[:,:,1].argmin()][0])
xdl,ydl = tuple(cnt1[cnt1[:,:,1].argmax()][0])
xct,yct = tuple(cnt2[cnt2[:,:,1].argmin()][0])
xcl,ycl = tuple(cnt2[cnt2[:,:,1].argmax()][0])
return(img_,xdt,ydt,xdl,ydl,xct,yct,xcl,ycl)
@app.route('/show_image/<filename>')
def show_image(filename):
return send_from_directory("uploads/",(filename))
def model_predict(img_path, learn):
img =open_image(img_path)
out=np.round(np.array(learn.predict(img)[1]))[0]
return out
def get_seg(img_path,model):
DEVICE='cuda'
image=cv2.imread(img_path)
image=cv2.resize(image,(512,512))
show_img=cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image= cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype('float32')
img=image/255
img= np.moveaxis(img,2,0)
#img=np.expand_dims(img,axis=0)
x_tensor = torch.from_numpy(img).to(DEVICE).unsqueeze(0)
pr_mask=gl_model.predict(x_tensor)
pr_mask=pr_mask[0].cpu().numpy().round()
pr_mask=np.moveaxis(pr_mask,0,2)
kernel = np.ones((1,1),np.uint8)
img_out,xdt,ydt,xdl,ydl,xct,yct,xcl,ycl=img_boundary(show_img.copy(),pr_mask.copy(),kernel)
cdr=np.sqrt(np.square(xcl-xct)+np.square(ycl-yct))/np.sqrt(np.square(xdl-xdt)+np.square(ydl-ydt))
return(img_out,cdr)
@app.route('/', methods=['GET'])
def index():
# Main page
name = ""
return render_template('index.html', image_name=name)
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['image']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
preds = model_predict(file_path,dr_model)
pred_class = decode_prediction[int(preds)]
try:
mask,cdr=get_seg(file_path,gl_model)
result = str(pred_class)+";cup to disk ratio:"+str(np.round(cdr,1))
if int(preds) in [2,3,4]:
result2= "Risk of Diabetic Retinopathy is High please visit a Doctor"
elif np.round(cdr,1) >=0.6:
result2="There might be a risk of glaucoma as your cdr:"+str(np.round(cdr,1))+" is greater than 0.6, please visit a Doctor"
else:
result2="There are no signs of Glaucoma or Diabetic retinopthy"
except:
mask=np.zeros((512,512,3))
result = str(pred_class)+";cup to disk ratio:"+"Disk Area Not Visible"
if int(preds) in [2,3,4]:
result2= "Risk of Diabetic Retinopathy is High please visit a Doctor"
else:
result2="There are no signs of Diabetic Retinopathy "
plt.imsave('uploads/out1.png',mask)
imdata = pickle.dumps(mask)
#imdata=cv2.imencode('.jpg',mask)[0]
out_img = json.dumps(base64.b64encode(imdata).decode('ascii'))
out={"result":result,"suggestion":result2,'img':out_img}
return out
return None
@app.route('/out')
def show_out():
name = 'out1.png'
return render_template('out.html', image_name=name)
if __name__ == '__main__':
app.run(port=5002, debug=True)
# Serve the app with gevent
#http_server = WSGIServer(('0.0.0.0', 5002), app)
#http_server.serve_forever()