-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwitter_sentiment.py
179 lines (121 loc) · 3.89 KB
/
twitter_sentiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import numpy as np
import os
import re
from keras.preprocessing import sequence
def token(sentence, remove_vowels=False, remove_repeat=False, minchars=2):
tokens = []
# for t in re.findall("[A-Z]{2,}(?![a-z])|[A-Z][a-z]+(?=[A-Z])|[\w]+",sentence.lower()):
for t in re.findall("[a-zA-Z]+",sentence.lower()):
if len(t)>=minchars:
if remove_vowels:
t=removeVovels(t)
if remove_repeat:
t=removeRepeat(t)
tokens.append(t)
return tokens
VOWELS = ['a', 'e', 'i', 'o', 'u']
def removeRepeat(string):
return re.sub(r'(.)\1+', r'\1\1', string)
def removeVovels(string):
return ''.join([l for l in string.lower() if l not in VOWELS])
if __name__ == '__main__':
pass
def normalize_matrix(matrix):
pass
def create_train_data(path, data_col, label_col):
f=open(path, 'r')
sentences=f.read().lower()
sentences=sentences.split('\n')[:-1]
X_train=[]
y_train=[]
for line in sentences:
line=line.split('\t')
tokenized_lines = token(line[data_col])
char_list=[]
for words in tokenized_lines:
for ch in words:
char_list.append(ch)
char_list.append(' ')
#print(char_list)
X_train.append(char_list)
if line[label_col]=='0':
y_train.append(0)
if line[label_column]=='1':
y_train.append(1)
if line[label_column]=='2':
y_train.append(2)
print(len(y_train))
y_train=np.asarray(y_train)
assert(len(X_train) == y_train.shape[0])
return[X_train, y_train]
def char2num(mapc2n, mapn2c, train_data, max_len):
char_num=0
allchars=[]
for lines in train_data:
allchars=set(allchars+lines)
allchars=list(allchars)
for char in allchars:
mappingChar2Num[char]=char_num
mappingNum2Char[char_num]=char
char_num +=1
assert(len(allchars)==char_num)
X_train = []
for line in train_data:
char_list=[]
for letter in line:
char_list.append(mappingChar2Num[letter])
#print(no) -- Debugs the number mappings
X_train.append(char_list)
print(mappingChar2Num)
print(mappingNum2Char)
#Pads the X_train to get a uniform vector
#TODO: Automate the selection instead of manual input
X_train = sequence.pad_sequences(X_train[:], maxlen=max_len)
return [X_train,mappingNum2Char,mappingChar2Num,char_num]
path='/Users/krishrana/Python/Sub-word-LSTM-master/Data/IIITH_Codemixed.txt'
mappingChar2Num={}
mappingNum2Char={}
max_len=280
label_column=3
data_column=1
labels=['0','1','2']
num_classes=3
out=create_train_data(path,data_column, label_column)
X=out[0]
y=out[1]
print('##################### training_data created ########################')
out_1=char2num(mappingChar2Num, mappingNum2Char, X, max_len)
X=out_1[0]
mappingNum2Char=out_1[1]
mappingChar2Num=out_1[2]
max_features=out_1[3]
X=np.array(X)
y=np.array(y).flatten()
print(X.shape)
print(len(y))
from keras.models import Sequential
from keras.preprocessing import sequence
from keras import backend as K
from keras.layers.core import Dense, Dropout, Activation
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import LSTM, GRU
from keras.layers.convolutional import Convolution1D, MaxPooling1D
from keras import optimizers
from keras.utils import np_utils
model = Sequential()
model.add(Embedding(max_features, 128, input_length=max_len))
model.add(Convolution1D(nb_filter=128, filter_length=3, border_mode='valid',activation='relu',subsample_length=1))
model.add(MaxPooling1D(pool_length=3))
model.add(LSTM(256, dropout_W=0.2, dropout_U=0.2, return_sequences=True))
model.add(LSTM(256, dropout_W=0.2, dropout_U=0.2, return_sequences=False))
model.add(Dense(3))
model.add(Activation('softmax'))
model.summary()
batch_size=32
epoch=50
adam=optimizers.Adam(lr=0.001)
y=np_utils.to_categorical(y, num_classes)
print(y)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, y, batch_size=batch_size, epochs=epoch, validation_split=0.2)
model.save('sentiNet.pt')