-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisualization.py
156 lines (115 loc) · 5.25 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from pathlib import Path
import pickle
import torch
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
from anndata import AnnData
import scanpy as sc
import seaborn as sns
import matplotlib.pyplot as plt
import os
import numpy as np
dataset_name="pancreas"
print(dataset_name)
##################################################################################
if dataset_name == "ms":
data_dir = Path("../data/ms")
adata = sc.read(data_dir / "c_data.h5ad")
adata_test = sc.read(data_dir / "filtered_ms_adata.h5ad")
adata.obs["celltype"] = adata.obs["Factor Value[inferred cell type - authors labels]"].astype("category")
adata_test.obs["celltype"] = adata_test.obs["Factor Value[inferred cell type - authors labels]"].astype("category")
adata.obs["batch_id"] = adata.obs["str_batch"] = "0"
adata_test.obs["batch_id"] = adata_test.obs["str_batch"] = "1"
adata.var.set_index(adata.var["gene_name"], inplace=True)
adata_test.var.set_index(adata.var["gene_name"], inplace=True)
data_is_raw = False
filter_gene_by_counts = False
adata_test_raw = adata_test.copy()
adata = adata.concatenate(adata_test, batch_key="str_batch")
adata.obs["indices"]= np.arange(adata.obs.shape[0])
if dataset_name == "pancreas": #RB
data_dir = Path("../data/pancreas")
adata = sc.read(data_dir / "demo_train.h5ad")
adata_test = sc.read(data_dir / "demo_test.h5ad")
adata.obs["celltype"] = adata.obs["Celltype"].astype("category")
adata_test.obs["celltype"] = adata_test.obs["Celltype"].astype("category")
adata.obs["batch_id"] = adata.obs["str_batch"] = "0"
adata_test.obs["batch_id"] = adata_test.obs["str_batch"] = "1"
data_is_raw = False
filter_gene_by_counts = False
adata_test_raw = adata_test.copy()
adata = adata.concatenate(adata_test, batch_key="str_batch")
adata.obs["indices"]= np.arange(adata.obs.shape[0])
if dataset_name == "myeloid":
data_dir = Path("../data/mye/")
adata = sc.read(data_dir / "reference_adata.h5ad")
adata_test = sc.read(data_dir / "query_adata.h5ad")
adata.obs["celltype"] = adata.obs["cell_type"].astype("category")
adata_test.obs["celltype"] = adata_test.obs["cell_type"].astype("category")
adata.obs["batch_id"] = adata.obs["str_batch"] = "0"
adata_test.obs["batch_id"] = adata_test.obs["str_batch"] = "1"
adata_test_raw = adata_test.copy()
data_is_raw = False
filter_gene_by_counts = False
adata = adata.concatenate(adata_test, batch_key="str_batch")
adata.obs["indices"]= np.arange(adata.obs.shape[0])
##################################################################################
#### Take results from the save transformer model
file_path = os.path.join(f"/auto/k2/aykut3/scgpt/scGPT/scgpt_gcn/save_scgcn/scgpt_{dataset_name}_median/results.pkl")
with open(file_path, "rb") as file:
results= pickle.load(file)
seed_list=results["seed_numbers"]
# We can automatize this, but I just want some visual examples
path_to_plot= "/auto/k2/aykut3/scgpt/scGPT/scgpt_gcn/scgnn_merged/pancreas/type3/GC-CG/dname_pancreas_path_[GC-CG]_type_type3_seedid_4_seed_16"
with open(path_to_plot, "rb") as f:
loaded_results = pickle.load(f)
y_test_preds= loaded_results["test_preds"][-1]
# This part will be used for further plotting, it can be used in a different file, no problem at all
id2type=results["id_maps"]
print(id2type)
print(adata_test_raw.obs["celltype"].unique())
adata_test_raw.obs["predictions"]=[id2type[p] for p in y_test_preds]
palette_ = plt.rcParams["axes.prop_cycle"].by_key()["color"]
palette_ = plt.rcParams["axes.prop_cycle"].by_key()["color"] + plt.rcParams["axes.prop_cycle"].by_key()["color"] + plt.rcParams["axes.prop_cycle"].by_key()["color"]
palette_= sns.color_palette("Set2",n_colors=14)
custom_palette = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b",
"#e377c2", "#7f7f7f", "#bcbd22", "#17becf", "#aec7e8", "#ffbb78",
"#98df8a", "#ff9896"]
palette_ = {c: custom_palette[i] for i, c in enumerate(adata.obs["celltype"].unique())}
print(palette_)
#print(adata_test_raw.to_df())
plt.figure(figsize=(8,8))
with plt.rc_context({"figure.figsize": (3,3), "figure.dpi": (300),"axes.labelsize": 8, "axes.linewidth": 0.75}):
sc.pl.umap(
adata_test_raw,
color="celltype",
palette=palette_,
show=False,
legend_fontsize=3,
legend_loc="right margin",
size=8,
title=""
)
if dataset_name=="ms":
fig_label="MS"
else:
fig_label=dataset_name.capitalize()
plt.xlabel("Annotated")
plt.ylabel(fig_label)
plt.savefig("results_annotated.png", dpi=300)
with plt.rc_context({"figure.figsize": (3,3), "figure.dpi": (300),"axes.labelsize": 8, "axes.linewidth": 0.75}):
sc.pl.umap(
adata_test_raw,
color="predictions",
palette=palette_,
show=False,
legend_fontsize=3,
legend_loc="right margin",
size=8,
)
if dataset_name=="ms":
fig_label="MS"
else:
fig_label=dataset_name.capitalize()
plt.xlabel("Predicted")
plt.ylabel(fig_label)
plt.savefig("results_predicted.png", dpi=300)