-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfigs.py
87 lines (70 loc) · 1.58 KB
/
configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, List
import torch
from torch.utils.data import DataLoader
@dataclass
class ModelParameters:
model_type: str
path: str
fan_in: int
n_class: int
cls_logit: Optional[torch.Tensor] = None
fan_mid: int = 200
gcn_dropout: float = 0.0
encoder_dropout: float = 0.0
lmbd: float = 0.0
encoder_ckpt: Optional[Path] = None
@dataclass
class EncoderConfig:
model_name: str
dataset_name:str
n_class: int
CLS: bool = True
dropout: float = 0.1
@dataclass
class Type12Config:
fan_in: int
fan_mid: int = 200
fan_out: int = 18 # n_class
dropout: float = 0.2
@dataclass
class Type3Config:
type12_config: Type12Config
cls_logit: torch.Tensor
lmbd: float = 0.7
@dataclass
class Type4Config:
type12_config: Type12Config
encoder_config: EncoderConfig
lmbd: float = 0.7
batch_size: int =32 # I used 16
@dataclass
class TypeInput:
x: torch.Tensor
A_s: torch.Tensor
y: torch.Tensor
train_ids: torch.Tensor
test_ids: torch.Tensor
valid_ids: torch.Tensor
@dataclass
class Type4Input:
x: torch.Tensor
A_s: torch.Tensor
train_ids: torch.Tensor
test_ids: torch.Tensor
valid_ids: torch.Tensor
y: torch.Tensor
loaders: List[DataLoader]
@dataclass
class SearchParams:
fan_mid: int
gcn_p: float # dropout prob
gcn_lr: float
wd: float
lmbd: float
encoder_p: float = 0.0
encoder_lr: float = 0.0
max_epochs: int = 1000
patience: int = 50
batch_size:int =32