-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperformance.py
158 lines (134 loc) · 6.17 KB
/
performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import subprocess
import json
import torch
import argparse
import numpy as np
import sys
from dataset import EurDataset, collate_data
from transceiver import DeepJSOC
from torch.utils.data import DataLoader
from utils import BleuScore, greedy_decode, SeqtoText
from tqdm import tqdm
from sklearn.preprocessing import normalize
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
# see the details of model with print
model = SentenceTransformer("bert-base-uncased")
from w3lib.html import remove_tags
parser = argparse.ArgumentParser()
parser.add_argument('--data-dir', default='data/train_data.pkl', type=str)
parser.add_argument('--vocab-file', default='data/vocab.json', type=str)
parser.add_argument('--checkpoint-path', default='checkpoints', type=str)
parser.add_argument('--channel', default='AWGN', type=str)
parser.add_argument('--MAX-LENGTH', default=32, type=int)
parser.add_argument('--MIN-LENGTH', default=4, type=int)
parser.add_argument('--d-model', default=128, type = int)
parser.add_argument('--dff', default=512, type=int)
parser.add_argument('--num-layers', default=4, type=int)
parser.add_argument('--num-heads', default=8, type=int)
parser.add_argument('--batch-size', default=256, type=int)
parser.add_argument('--epochs', default=2, type = int)
parser.add_argument('--vq-dim', default=6, type=int)
parser.add_argument('--channel-in-len', default=36, type=int)
parser.add_argument('--marker-enc-size', default=44, type=int)
parser.add_argument('--safety-len', default=59, type=int)
parser.add_argument('--estimator-file',default='36bit_59bit_estimator.pth')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def performance(args, Pd,ps, net):
bleu_score_1gram = BleuScore(1, 0, 0, 0)
test_eur = EurDataset('test')
test_iterator = DataLoader(test_eur, batch_size=args.batch_size, num_workers=0,
pin_memory=True, collate_fn=collate_data)
StoT = SeqtoText(token_to_idx, end_idx)
score = []
score2 = []
net.eval()
with torch.no_grad():
sim_score = []
for epoch in range(args.epochs):
Tx_word = []
Rx_word = []
#break
test_p = -1
for pd in tqdm(Pd):
test_p +=1
#break
word = []
target_word = []
for sents in test_iterator:
sents = sents.to(device)
# src = batch.src.transpose(0, 1)[:1]
target = sents
out = greedy_decode(net, sents, pd,ps, args.MAX_LENGTH, pad_idx,
start_idx, args.channel)
sentences = out.cpu().numpy().tolist()
result_string = list(map(StoT.sequence_to_text, sentences))
word = word + result_string
target_sent = target.cpu().numpy().tolist()
result_string = list(map(StoT.sequence_to_text, target_sent))
target_word = target_word + result_string
Tx_word.append(word)
Rx_word.append(target_word)
embeddings_in = model.encode(Tx_word[test_p])
embeddings_tx = model.encode(Rx_word[test_p])
similarities = cosine_similarity(embeddings_in,embeddings_tx)
avg_sim = 0
for i in range(len(similarities)):
avg_sim += similarities[i,i]
avg_sim = avg_sim / (i+1)
avg_sim = (avg_sim-0.4)/0.6
if epoch == args.epochs-1:
sim_score.append(avg_sim)
bleu_score = []
for sent1, sent2 in zip(Tx_word, Rx_word):
# 1-gram
bleu_score.append(bleu_score_1gram.compute_blue_score(sent1, sent2)) # 7*num_sent
# sim_score.append(similarity.compute_similarity(sent1, sent2)) # 7*num_sent
bleu_score = np.array(bleu_score)
bleu_score = np.mean(bleu_score, axis=1)
score.append(bleu_score)
# sim_score = np.array(sim_score)
# sim_score = np.mean(sim_score, axis=1)
# score2.append(sim_score)
score1 = np.mean(np.array(score), axis=0)
# score2 = np.mean(np.array(score2), axis=0)
return score1,sim_score
if __name__ == '__main__':
args = parser.parse_args()
#SNR = [0,3,6,9,12,15,18]
#SNR = [-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10]
#SNR = [0.00]
#ps = 0.02
#Pd = [0.01]
ps = 0.03
#Pd = [0.00]
#Pd = [0,0.01,0.02,0.03,0.04,0.05]
#Ps = [0.03]
#Ps = [sys.float_info.min,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1]
Pd = [sys.float_info.min,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1]
vocab = json.load(open(args.vocab_file, 'rb'))
token_to_idx = vocab['token_to_idx']
idx_to_token = dict(zip(token_to_idx.values(), token_to_idx.keys()))
num_vocab = len(token_to_idx)
pad_idx = token_to_idx["<PAD>"]
start_idx = token_to_idx["<START>"]
end_idx = token_to_idx["<END>"]
""" define optimizer and loss function """
deepjsoc = DeepJSOC(args.num_layers, num_vocab, num_vocab,
num_vocab, num_vocab, args.d_model, args.num_heads,
args.dff,args.vq_dim,args.channel_in_len,args.marker_enc_size,
args.safety_len,args.estimator_file, 0.1).to(device)
model_paths = []
for fn in os.listdir(args.checkpoint_path):
if not fn.endswith('.pth'): continue
idx = int(os.path.splitext(fn)[0].split('_')[-1]) # read the idx of image
model_paths.append((os.path.join(args.checkpoint_path, fn), idx))
model_paths.sort(key=lambda x: x[1]) # sort the image by the idx
model_path, _ = model_paths[-1]
print(model_path)
checkpoint = torch.load(model_path)
deepjsoc.load_state_dict(checkpoint)
print('model load!', model_path)
bleu_score,bert_score = performance(args, Pd,ps, deepjsoc)
print(bleu_score,bert_score)