-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
131 lines (109 loc) · 4.97 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import argparse
import time
import json
import torch
import random
import torch.nn as nn
import numpy as np
from utils import train_step, val_step
from dataset import EurDataset, collate_data
from transceiver import DeepJSOC
from torch.utils.data import DataLoader
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('--vocab-file', default='data/vocab.json', type=str)
parser.add_argument('--checkpoint-path', default='checkpoints', type=str)
parser.add_argument('--MAX-LENGTH', default=32, type=int)
parser.add_argument('--MIN-LENGTH', default=4, type=int)
parser.add_argument('--d-model', default=128, type=int)
parser.add_argument('--dff', default=512, type=int)
parser.add_argument('--lr', default=1e-3, type=float)
parser.add_argument('--num-layers', default=4, type=int)
parser.add_argument('--num-heads', default=8, type=int)
parser.add_argument('--batch-size', default=8, type=int)
parser.add_argument('--epochs', default=150, type=int)
parser.add_argument('--warm-start',default=-1,type=int)
parser.add_argument('--vq-dim', default=6, type=int)
parser.add_argument('--channel-in-len', default=36, type=int)
parser.add_argument('--marker-enc-size', default=44, type=int)
parser.add_argument('--safety-len', default=59, type=int)
parser.add_argument('--estimator-file',default='36bit_59bit_estimator.pth')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def validate(epoch, args, net):
test_eur = EurDataset('val')
test_iterator = DataLoader(test_eur, batch_size=args.batch_size, num_workers=0,
pin_memory=True, collate_fn=collate_data)
net.eval()
pbar = tqdm(test_iterator)
total = 0
with torch.no_grad():
for sents in pbar:
sents = sents.to(device)
ce_loss,comm_loss,gru_loss = val_step(net,epoch,args.warm_start, sents, sents, pad_idx,
criterion)
total += ce_loss
pbar.set_description(
'Epoch: {}; Type: VAL; CELoss: {:.5f} comm_loss={}, gru_loss ={}'.format(
epoch + 1, ce_loss,comm_loss,gru_loss
)
)
return total/len(test_iterator)
def train(epoch, args, net, mi_net=None):
train_eur= EurDataset('train')
train_iterator = DataLoader(train_eur, batch_size=args.batch_size, num_workers=0,
pin_memory=True, collate_fn=collate_data)
pbar = tqdm(train_iterator)
for sents in pbar:
sents = sents.to(device)
ce_loss,comm_loss,gru_loss = train_step(net,epoch,args.warm_start, sents, sents, pad_idx,
optimizer, criterion)
pbar.set_description(
'Epoch: {}; Type: Train; CELoss: {:.5f}, comm_loss={}, gru_loss ={}'.format(
epoch + 1, ce_loss,comm_loss,gru_loss
)
)
if __name__ == '__main__':
# setup_seed(10)
args = parser.parse_args()
vocab = json.load(open(args.vocab_file, 'rb'))
token_to_idx = vocab['token_to_idx']
num_vocab = len(token_to_idx)
pad_idx = token_to_idx["<PAD>"]
start_idx = token_to_idx["<START>"]
end_idx = token_to_idx["<END>"]
""" define optimizer and loss function """
deepjsoc = DeepJSOC(args.num_layers, num_vocab, num_vocab,
num_vocab, num_vocab, args.d_model, args.num_heads,
args.dff,args.vq_dim,args.channel_in_len,args.marker_enc_size,
args.safety_len,args.estimator_file, 0.1).to(device)
#checkpoint = torch.load('checkpoints/deepsc-Rayleigh/checkpoint_00.pth')
#deepjsoc.load_state_dict(checkpoint)
criterion = nn.CrossEntropyLoss(reduction = 'none')
#optimizer = torch.optim.Adam(deepsc.parameters(),
# lr=5e-4, betas=(0.9, 0.98), eps=1e-8, weight_decay = 5e-4)
optimizer = torch.optim.Adam(deepjsoc.parameters(),
lr=args.lr, betas=(0.9, 0.98), eps=1e-8, weight_decay = 5e-4)
#initNetParams(deepsc)
#for name, param in deepsc.named_parameters():
# print(f"Parameter name: {name}")
# print(param.shape)
# print(param.requires_grad)
for epoch in range(args.epochs):
start = time.time()
record_acc = 10
train(epoch, args, deepjsoc)
avg_acc = validate(epoch, args, deepjsoc)
if avg_acc < record_acc:
if not os.path.exists(args.checkpoint_path):
os.makedirs(args.checkpoint_path)
with open(args.checkpoint_path + '/checkpoint_{}.pth'.format(str(epoch + 1).zfill(2)), 'wb') as f:
torch.save(deepjsoc.state_dict(), f)
record_acc = avg_acc
record_loss = []