-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path06_calculate_effect_size_stat.R
50 lines (37 loc) · 1.36 KB
/
06_calculate_effect_size_stat.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Convert to effect sizes from t or F vals
# 5.29.20 KLS
#6.20.20 CHANGE THIS SCRIPT
# load required packages
library(here)
library(tidyverse)
library(esc)
# load source functions
source(here::here('scr', 'reverse_es.R'))
# set hard-coded variables
file <- 'cleaned.csv'
# load data
dt <- read.csv(here::here('output', file))
# Calculate effect sizes from statistics ####
dm <- dt[which(dt$Design == 'extreme group'),] # pull out means
ds <- dm[is.na(dm$sd),] # pull out no sd files
ds <- ds[c(1:2, 6, 8:10, 12:15, 19:20)]
ds <- pivot_wider(ds,
id_cols = colnames(ds[c(1:6, 11:12)]),
names_from = 'Intervention',
values_from = c('n', 'age_mean', 'age_range', 'age_sd'))
# calculate effect size from t vals ####
ds <- ds[!is.na(ds$tvalue),]
ds <- mutate(ds,
fishers_z = esc_t(t = tvalue, grp1n = n_Older, grp2n = n_Younger, es.type = "r")[8][[1]],
var_fishers_z = 1 / ((n_Older + n_Younger) - 3)
)
# remove unnecessary columns
ds$tvalue <- NULL
ds$Fvalue <- NULL
ds$df <- NULL
## effect per decade ####
#ds$adj_effect_size <- ds$effect_size * 10 # calculate effect per year and then multiply by 10 for decade
# Reversals ####
ds <- reverse_es(ds, 'Green 1994')
write.csv(ds, here::here('output', 'extreme_group_stat_table.csv'), row.names = FALSE)
rm(dm, ds, dt, file, reverse_es)