-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
210 lines (162 loc) · 6.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from datetime import datetime
import numpy as np
import torch
import torch.nn as nn
import tqdm.notebook as tq
import wandb
import torchmetrics
from torch.utils.data import DataLoader
import pandas as pd
import seaborn as sn
import matplotlib.pyplot as plt
# Determine which device on import, and then use that elsewhere.
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda:0")
torch.cuda.set_device(device)
def plot_confusion_matrix(cm, class_names):
cm = cm.astype(np.float32) / cm.sum(axis=1)[:, None]
df_cm = pd.DataFrame(cm, class_names, class_names)
ax = sn.heatmap(df_cm, annot=True, cmap='flare')
ax.set_xlabel('Predicted')
ax.set_ylabel('True')
plt.show()
def count_classes(preds):
pred_classes = preds.argmax(dim=1)
n_classes = preds.shape[1]
return [(pred_classes == c).sum().item() for c in range(n_classes)]
# Task 1
# def train_epoch(epoch, model, optimizer, criterion, loader, num_classes, device):
# model.train()
# loss_sum = 0
# correct = 0
# total = 0
# for i, (inputs, lbls) in enumerate(loader):
# inputs, lbls = inputs.to(device), lbls.to(device)
# optimizer.zero_grad()
# outputs = model(inputs)
# loss = criterion(outputs, lbls)
# loss.backward()
# optimizer.step()
# loss_sum += loss.item()
# _, preds = outputs.max(1)
# correct += preds.eq(lbls).sum().item()
# total += lbls.size(0)
# metrics_dict = {
# 'Loss_train': loss_sum / len(loader),
# 'Accuracy_train': correct / total,
# }
# return metrics_dict
# def val_epoch(epoch, model, criterion, loader, num_classes, device):
# model.eval()
# loss_sum = 0
# correct = 0
# total = 0
# predictions = []
# targets = []
# confusion_matrix = torch.zeros(num_classes, num_classes)
# for inputs, lbls in loader:
# inputs, lbls = inputs.to(device), lbls.to(device)
# with torch.no_grad():
# outputs = model(inputs)
# loss = criterion(outputs, lbls)
# loss_sum += loss.item()
# _, preds = outputs.max(1)
# correct += preds.eq(lbls).sum().item()
# total += lbls.size(0)
# predictions.append(preds.cpu().numpy())
# targets.append(lbls.cpu().numpy())
# # Update confusion matrix
# flattened_preds = torch.from_numpy(preds.cpu().numpy().reshape(-1))
# flattened_lbls = torch.from_numpy(lbls.cpu().numpy().reshape(-1))
# indices = flattened_lbls * num_classes + flattened_preds
# confusion_matrix += torch.bincount(indices, minlength=num_classes**2).view(num_classes, num_classes)
# predictions = np.concatenate(predictions)
# targets = np.concatenate(targets)
# uar = np.diag(confusion_matrix) / confusion_matrix.sum(axis=1)
# metrics_dict = {
# 'Loss_val': loss_sum / len(loader),
# 'Accuracy_val': correct / total,
# 'UAR_val': uar
# }
# return metrics_dict, confusion_matrix.numpy()
# Task 2
def train_epoch(epoch, model, optimizer, criterion, loader, num_classes, device):
model.train()
loss_sum = 0
correct = 0
total = 0
for i, batch in enumerate(loader):
inputs = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
optimizer.zero_grad()
outputs = model(inputs, attention_mask)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
loss_sum += loss.item()
_, preds = outputs.max(1)
correct += preds.eq(labels).sum().item()
total += labels.size(0)
metrics_dict = {
'Loss_train': loss_sum / len(loader),
'Accuracy_train': correct / total,
}
return metrics_dict
def val_epoch(epoch, model, criterion, loader, num_classes, device):
model.eval()
loss_sum = 0
correct = 0
total = 0
predictions = []
targets = []
confusion_matrix = torch.zeros(num_classes, num_classes)
for batch in loader:
inputs = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
lbls = batch['labels'].to(device)
with torch.no_grad():
outputs = model(inputs, attention_mask)
loss = criterion(outputs, lbls)
loss_sum += loss.item()
_, preds = outputs.max(1)
correct += preds.eq(lbls).sum().item()
total += lbls.size(0)
predictions.append(preds.cpu().numpy())
targets.append(lbls.cpu().numpy())
# Update confusion matrix
flattened_preds = torch.from_numpy(preds.cpu().numpy().reshape(-1))
flattened_lbls = torch.from_numpy(lbls.cpu().numpy().reshape(-1))
indices = flattened_lbls * num_classes + flattened_preds
confusion_matrix += torch.bincount(indices, minlength=num_classes**2).view(num_classes, num_classes)
predictions = np.concatenate(predictions)
targets = np.concatenate(targets)
uar = np.diag(confusion_matrix) / confusion_matrix.sum(axis=1)
metrics_dict = {
'Loss_val': loss_sum / len(loader),
'Accuracy_val': correct / total,
'UAR_val': uar
}
return metrics_dict, confusion_matrix.numpy()
def train_model(model, train_loader, val_loader, optimizer, criterion,
class_names, n_epochs, project_name, ident_str=None):
num_classes = len(class_names)
model.to(device)
if ident_str is None:
ident_str = datetime.now().strftime("%Y%m%d_%H%M%S")
exp_name = f"{model.__class__.__name__}_{ident_str}"
run = wandb.init(project=project_name, name=exp_name)
try:
for epoch in tq.tqdm(range(n_epochs), total=n_epochs, desc='Epochs'):
train_metrics_dict = train_epoch(epoch, model, optimizer, criterion,
train_loader, num_classes, device)
val_metrics_dict, cm = val_epoch(epoch, model, criterion, val_loader,
num_classes, device)
wandb.log({**train_metrics_dict, **val_metrics_dict})
finally:
run.finish()
# Plot confusion matrix from results of last val epoch
plot_confusion_matrix(cm, class_names)
# Save the model weights to "saved_models/"
torch.save(model.state_dict(), "saved_models/model.pth")