-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathserver.py
76 lines (64 loc) · 2.21 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# -*- coding:utf-8 -*-
"""
@Time: 2022/03/08 12:50
@Author: KI
@File: server.py
@Motto: Hungry And Humble
"""
import torch
import numpy as np
import random
from client import train, test, local_adaptation
from model import ANN
import copy
from tqdm import tqdm
# Implementation for per-fedavg server.
class PerFed:
def __init__(self, args):
self.args = args
self.nn = ANN(args=self.args, name='server').to(args.device)
self.nns = []
# init
for i in range(self.args.K):
temp = copy.deepcopy(self.nn)
temp.name = self.args.clients[i]
self.nns.append(temp)
def server(self):
for t in tqdm(range(self.args.r), desc='round'):
# print('round', t + 1, ':')
m = np.max([int(self.args.C * self.args.K), 1])
index = random.sample(range(0, self.args.K), m) # st
# dispatch parameters
self.dispatch(index)
# local updating
self.client_update(index, t)
# aggregation parameters
self.aggregation(index)
return self.nn
def aggregation(self, index):
s = 0
for j in index:
# normal
s += self.nns[j].len
params = {}
for k, v in self.nns[0].named_parameters():
params[k] = torch.zeros_like(v.data)
for j in index:
for k, v in self.nns[j].named_parameters():
params[k] += v.data / len(index)
# params[k] += v.data * (self.nns[j].len / s)
for k, v in self.nn.named_parameters():
v.data = params[k].data.clone()
def dispatch(self, index):
for j in index:
for old_params, new_params in zip(self.nns[j].parameters(), self.nn.parameters()):
old_params.data = new_params.data.clone()
def client_update(self, index, t): # update nn
for k in index:
self.nns[k] = train(self.args, self.nns[k], k, t)
def global_test(self):
for j in tqdm(range(self.args.K), 'global test'):
model = copy.deepcopy(self.nn)
model.name = self.args.clients[j]
model = local_adaptation(self.args, model)
test(self.args, model)