-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patharchitecture.py
56 lines (36 loc) · 1.39 KB
/
architecture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import sys
import torch
import torch.nn as nn
class LinearModel(nn.Module):
def __init__(self, input_size, num_actions):
super(LinearModel, self).__init__()
self.linear_layer = nn.Linear(input_size, num_actions)
def __call__(self, ob):
if isinstance(ob, list):
ob = torch.tensor(ob, dtype=torch.float)
logit = self.linear_layer(ob)
return logit
class MLPModel(nn.Module):
def __init__(self, input_size, num_actions, hidden_size=100):
super(MLPModel, self).__init__()
self.input_layer = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.output_layer = nn.Linear(hidden_size, num_actions)
def __call__(self, ob):
if isinstance(ob, list):
ob = torch.tensor(ob, dtype=torch.float)
hidden = self.relu(self.input_layer(ob))
logit = self.output_layer(hidden)
return logit
class ReinforceModel(nn.Module):
def __init__(self, input_size, num_actions, model_class):
super(ReinforceModel, self).__init__()
self.model = model_class(input_size, num_actions)
self.baseline_model = model_class(input_size, 1)
def __call__(self, ob):
return self.model(ob)
def predict_baseline(self, ob):
if isinstance(ob, list):
ob = torch.tensor(ob, dtype=torch.float)
return self.baseline_model(ob)